
Programming Languages and Computation

Week 3: Primitive Operators

1. In this exercise, you will extend Brischeme with a new primitive operator for less-than-or-equal.

(a) Add a new nullary constructor Leq to the type primops in the file lib/ast.ml.

(b) Explain that this operator looks like "<=" as a string, for the purposes of printing (e.g. in
debug messages), by adding an extra case to the function string_of_primop in file lib/ast.ml.

(c) Find and understand the function lex_bool from the file lib/lexer.ml. Using this for inspi-
ration, write a function lex_le_or_leq which, when invoked in a state where peek () = '<',
returns either PrimOp Leq or PrimOp Less depending on whether the next character in
stream is '=' or not. Replace the right-hand-side of the '<' case in the function lex_init by a
call to this function.

(d) Find the code for evaluating a call of the primitive operators, in the function step_sexp
of the file lib/eval.ml. Add a case for the less-than-or-equal primitive operator, taking the
existing code for the less-than operator as inspiration.

Solution

(a) type primops =
...
| Leq

(b) let string_of_primop (p:primop) : string =
...
| Leq −> "<="

(c) let lex_le_or_leq () : token =
(* Assumes [peek () = '<'] *)
drop ();
match peek () with
| '=' −>

drop ();
TkPrimOp Leq

1

| _ −> TkPrimOp Less

and, in lex_init:

| '<' −> lex_le_or_leq ()

(d) | Call (Leq, [Num n1; Num n2]) −> Bool (n1 <= n2)

2. In this exercise, you will extend Brischeme with pairs (tuples of length 2). The idea is that pairs
will be constructed using a new primitive binary operator cons, and new primitive unary operators
car and cdr can be used to project out the first and second components, as in:

> (define x (cons 2 6))
> (car x)
2
> (cdr x)
6

(a) Add new nullary constructors Cons, Car and Cdr to the type primops in the file lib/ast.ml,
and explain what they look like as strings (for output purposes) in string_of_primop.

(b) Modify the function lex_kw_or_id to return TkPrimOp Cons, TkPrimOp Car and
TkPrimOp Cdr when the lexeme is "cons", "car" and "cdr" respectively.

(c) Explain that Call (Cons, [v1; v2]) is already a value (and therefore does not
make any execution step) whenever v1 and v2 are values, by adding a case
Call (Cons, [v1; v2]) when is_value v1 && is_value v2 −> true to the function is_value of file
lib/eval.ml. This will require that is_value is now defined as a recursive function, using
let rec.

(d) Explain how calls Call (Car, [Call (Cons, [v1; _])]) and Call (Cdr, [Call (Cons, [_; v2])]) are
evaluated, by modifying the code for primitive operations in step_sexp.

Solution

(a) type primop =
...
| Cons
| Car
| Cdr

(b) | Cons −> "cons"
| Car −> "car"
| Cdr −> "cdr"

2

(c) At the end of lex_kw_or_id:

(* Check if the lexeme is a keyword,
otherwise it's an identifier. *)

match !lexeme with
| "define" −> TkDefine
| "if" −> TkPrimOp If
| "not" −> TkPrimOp Not
| "and" −> TkPrimOp And
| "or" −> TkPrimOp Or
| "cons" −> TkPrimOp Cons
| "car" −> TkPrimOp Car
| "cdr" −> TkPrimOp Cdr
| "lambda" −> TkLambda
| _ −> TkIdent !lexeme

(d) let rec is_value (s:sexp) : bool =
match s with
| Num _ | Bool _ | Lambda _ | Nil −> true
| Call (Cons, [v1; v2]) when is_value v1 && is_value v2 −> true
| _ −> false

(e) | Call (Car, [Call (Cons, [v1; _])]) −> v1
| Call (Cdr, [Call (Cons, [_; v2])]) −> v2

3

