PROGRAMMING LANGUAGES AND COMPUTATION

Week 3: Primitive Operators

1. In this exercise, you will extend Brischeme with a new primitive operator for less-than-or-equal.

@
(b)

©

(d)

Solution

(@)

(b)

©

Add a new nullary constructor Leq to the type primops in the file lib/ast.ml.

Explain that this operator looks like "< =" as a string, for the purposes of printing (e.g. in
debug messages), by adding an extra case to the function string_of_primop in file lib/ast.ml.

Find and understand the function lex_bool from the file lib/lexer.ml. Using this for inspi-
ration, write a function lex_le_or_leq which, when invoked in a state where peek () = '<
returns either PrimOp Leq or PrimOp Less depending on whether the next character in
stream is '=' or not. Replace the right-hand-side of the '<' case in the function lex_init by a
call to this function.

Find the code for evaluating a call of the primitive operators, in the function step_sexp
of the file lib/eval.ml. Add a case for the less-than-or-equal primitive operator, taking the
existing code for the less-than operator as inspiration.

type primops =

| Leq

let string_of_primop (p:primop) : string =

| Leq —> ”<=H

let lex_le_or_leq () : token =

drop ();
match peek () with

L
= =

drop ();
TkPrimOp Leq

(d)

| _ —>TkPrimOp Less

and, in lex_init:

'<"—>lex_le_or_leq ()

| Call (Leg, [Num n1; Num n2]) —-> Bool (n1 <= n2)

2. In this exercise, you will extend Brischeme with pairs (tuples of length 2). The idea is that pairs
will be constructed using a new primitive binary operator cons, and new primitive unary operators
car and cdr can be used to project out the first and second components, as in:

(define x (cons 2 6))
(car x)

(cdr x)

@

(b)

©

(d

Solution

@

(b)

Add new nullary constructors Cons, Car and Cdr to the type primops in the file lib/ast.ml,
and explain what they look like as strings (for output purposes) in string_of_primop.

Modify the function lex_kw_or_id to return TkPrimOp Cons, TkPrimOp Car and

nn

TkPrimOp Cdr when the lexeme is "cons", "car" and "cdr" respectively.

Explain that Call (Cons, [v1;v2]) is already a value (and therefore does not
make any execution step) whenever v1 and v2 are values, by adding a case
Call (Cons, [v1; v2]) when is_value v1 && is_value v2 —> true to the function is_value of file
lib/eval.ml. This will require that is_value is now defined as a recursive function, using
let rec.

Explain how calls Call (Car, [Call (Cons, [v1; _])]) and Call (Cdr, [Call (Cons, [_; v2])]) are
evaluated, by modifying the code for primitive operations in step_sexp.

type primop =

| Cons
| Car
| Cdr

| Cons ->"cons"
| Car —>"car"
| Cdr —>"cdr"

(¢) At the end of lex_kw_or_id:

match !lexeme with

| "define" -> TkDefine

| "if" ->TkPrimOp If

| "not" -> TkPrimOp Not

|"and" -> TkPrimOp And
"or" ->TkPrimOp Or
"cons" -> TkPrimOp Cons
"car" -> TkPrimOp Car

|"edr" > TkPrimOp Cdr

| "lambda" -> TkLambda

| _ —> Tkldent !lexeme

(d) let recis_value (s:sexp) : bool =
match s with
| Num _| Bool _ | Lambda _ | Nil -> true
| Call (Cons, [v1; v2]) when is_value v1 && is_value v2 -> true
| _ -> false

(e) | Call(Car, [Call (Cons, [v1;_])]) —> v1
| Call (Cdr, [Call (Cons, [_; v2])]) —> v2

