
Miscellaneous Problems on Syntax

* 1. A language is said to be context-free just if it is expressible by a context free grammar. For each of
the following statements about languages over the alphabet {0,1}, determine if it is true or false.

(a) Every word of a context-free language is of finite length.

(b) The language ; is context free.

(c) The language of all even length strings is context free.

(d) Every finite subset of {0,1}∗ is context free.

Solution

(a) True

(b) True

(c) True

(d) True

* 2. For each of the following statements regarding context-free grammars and context-free languages
over some alphabet Σ, determine if it is true or false.

(a) In a context-free grammar, there is exactly one rule for each nonterminal.

(b) The language Σ∗ is context free.

(c) No context-free language can include the empty word.

(d) In a context-free grammar, there are always more terminal symbols than non-terminal
symbols.

Solution

(a) False

(b) True

(c) False

1

(d) False

* 3. Consider the following grammar, with start symbol S:

S −→ 0 T 0 | 1 T 1
T −→ 0 T | 1 T | 0 | 1

For each of the following words, give a derivation to show that it is in the language of this grammar.

(a) 0110

(b) 00110

(c) 11001

Solution

(a) S→ 0T0→ 01T0→ 0110

(b) S→ 0T0→ 00T0→ 001T0→ 00110

(c) S→ 1T1→ 11T1→ 110T1→ 11001

* 4. For each of the following CFG over {a, b, c}, with start symbol S, give (I) one word that is in the
language and (II) one word that is not.
Both words should be over the alphabet {a, b, c}. Label the two words with (I) and (II) so that it
is clear which is claimed to be in and which is claimed to be not in.

(a)
S −→ X X X
X −→ a | b

(b)
S −→ T S | ε
T −→ A b A b c
A −→ a A | ε

(c)
S −→ AC | BC
A −→ a | a A
B −→ b | b B
C −→ c | c C

(d)
S −→ a S a | b S | c

2

Solution

Lots of answers are possible, for example:

(a) (I) aaa, (II) ε

(b) (I) bbc, (II) c

(c) (I) c, (II) ε

* 5. Consider the grammar for Lisp, given below with start symbol S.

S −→ A | (E)
E −→ S E | ε
A −→ id | num

This grammar is over the 4 terminal symbols:

() id num

The nullability, first and follow maps for the non-terminals are:

Nonterminal Nullable(-) First(-) Follow(-)
S no (, id, num (,), id, num
E yes (, id, num)
A no id, num (,), id, num

(a) Construct the parsing table for this grammar.

(b) Is this grammar LL(1)?

Solution

(a)
Nonterminal () id num

S S −→ (E) S −→ A S −→ A
E E −→ SE E −→ ε E −→ SE E −→ SE
A A−→ id A−→ num

(b) Yes.

** 6. For each of the following languages over {0, 1}, construct a CFG to express it.

(a) {uvn | u ∈ {0}∗, v = 11, n ∈ N}

(b) {w | w starts with 1}

(c) {0u1v0 | u is v reversed}

3

Solution

(a)
S −→ U V
U −→ 0 U | ε
V −→ 11 V | ε

(b)
S −→ S 0 | S 1 | 1

(c)
S −→ 0 T 0
T −→ 0 T 0 | 1 T 1 | 1

** 7. For each of the following languages over {a, b}, construct a CFG to express it.

(a) {w | in w every ‘a’ is followed immediately by a ‘b’}

(b) {w | the number of occurrences of ‘a’ in w is a multiple of 3}

(c) {w | w does not contain substring “ab”}

Solution

(a)
S −→ b S | a b S | ε

(b)
S −→ b S | a T | ε
T −→ b T | a U
U −→ b U | a S

(c) If a word does not contain the substring ab then it must consist of some number of b
(possibly 0) followed by some number of a (possibly 0).

S −→ B A
A −→ a A | ε
B −→ b B | ε

** 8. Design CFG to express the following sets of strings over the alphabet of ASCII characters. Note:
(a) you will find it convenient use some abbreviation (like · · ·) to help present the expressions
compactly and (b) this would not be given as an exam question without specifying the shape of
the strings in each part more precisely.

(a) Valid Bristol University usernames (two lowercase letters followed by five digits)

4

(b) Valid 24 hour clock times in format HH:MM

(c) Valid IPv4 addresses written in decimal

Solution

(a)
S −→ LLDDDDD
L −→ a | b | · · · | z
D −→ 0 | 1 | · · · | 9

(b)
S −→ H : M
H −→ 0D | 1D | 20 | 21 | 22 | 23
D −→ 0 | 1 | · · · | 9
M −→ 0D | 1D | 2D | 3D | 4D | 5D

(c)
S −→ X .X .X .X
X −→ D | DD | 0DD | 1DD | 2ED | 25E | 255
E −→ 0 | 1 | 2 | 3 | 4
D −→ 0 | 1 | · · · | 9

** 9. Construct a context-free grammar to recognise Haskell floating point literals, e.g. 2.99, 23.09e+34,
0.12e−200, 1.4e1.
A general description is as follows. A decimal literal is a non-empty sequence of digits (0–9). A
floating point literal is either:

• a decimal literal followed by a decimal point followed by a decimal literal, optionally
followed by an exponent

• or, a decimal literal followed by an exponent.

An exponent is the character e; optionally followed by the character + or the character −; followed
in all cases by a decimal literal.

Solution

S −→ L.L | L.LE | LE
D −→ 0 | 1 | · · · | 9
L −→ DL | D
E −→ eL | e+ L | e− L

** 10. For each of the following, give an equivalent grammar which is LL(1).

5

(a)
S −→ S ∧ S | G⇒ prop
G −→ G ∧ G | prop

(b)
S −→ int | string | S⇒ S | S × S | (S)

Solution

(a) After dealing with left recursion in S and left factoring the result (but leaving G as is) we
get a grammar like:

S −→ D T
T −→ ∧ D T | ε
D −→ G⇒ prop
G −→ G ∧ G | prop

Next, we need to deal with left recursion and then left factor the in G part:
S −→ D T
T −→ ∧ D T | ε
D −→ G⇒ prop
G −→ prop H
H −→ ∧ prop H | ε

(b) First we factor out the base types int and string and the parenthesized form into a new
nonterminal for clarity and then remove left recursion and then left factor - S derives
sequences of A separated by⇒ and ×.

S −→ A T
T −→ ⇒ A T | × A T | ε
A −→ int | string | (S)

** 11. Consider the following grammar, with start symbol DeclList:

DeclList −→ DeclList ; Decl | ε
Decl −→ IdList : Type

IdList −→ IdList , id | id
Type −→ ty | Type tymod

This grammar is over the six terminal symbols:

; : , id ty tymod

(a) Give an equivalent grammar which is LL(1).

6

Solution

(a)
(1) DeclList −→ ; Decl DeclList
(2) | ε

(3) Decl −→ IdList : Type
(4) IdList −→ id IdListRest
(5) IdListRest −→ , id IdListRest
(6) | ε

(7) Type −→ ty TypeRest
(8) TypeRest −→ tymod TypeRest
(9) | ε

*** 12. Construct a CFG expressing the language of bit strings (strings over {0, 1}) that represent numbers
written in binary that are divisible by three. For example, 10010 should be derivable because it
represents the decimal number 18 written in binary and this number is divisible by 3. However,
101 should not be derivable, because this is the binary representation of the number 5, which is
not divisible by 3.

Solution

S −→ 0A | 1B
A −→ 0A | 1B | ε
B −→ 0C | 1A
C −→ 0B | 1C

The idea of this grammar is as follows. Imagine a derivation starting from S. Each sentential
form in the derivation, except the first and the last, has shape uX , for some non-empty string u
over {0,1} and some non-terminal X ∈ {A, B, C}. The non-terminal expresses exactly whether the
string u is a bitstring which has remainder 0 (A), 1 (B) or 2 (C) after dividing by 3. For example:

S→ 1B→ 11A→ 111B

The bitstring 1 indeed has remainder 1 when divided by 3, corresponding to nonterminal B.
The bitstring 11, representing the number 3 in binary, has remainder 0 when divided by 3,
corresponding to nonterminal A. The bitstring 111, representing the number 7, has remainder 1
when divided by 3, corresponding to nonterminal B.
The grammar is designed with this scheme in mind. For example, when sentential form is of
some shape uB, this means that the word u has remainder 1 after dividing by 3. Therefore, if we
extend the word by adding a 0 on the end, then we know, by simple modular arithmetic, that the
remainder will now be 2 ∗ 1+ 0= 2. Hence, we can replace B by 0C - we extend the word with
a 0 and record that the word u0, whatever it is, must now be remainder 2 after dividing it by
3. Similarly, if from uB we choose to extend the word with a 1, then the new remainder will be
2 ∗ 1+ 1= 3, i.e. remainder 0. Therefore, the other option when replacing B is to replace by 0A,
i.e. to create the sentential form u0C , which correctly records that it is a word with remainder
0 after dividing by 3. Since we only want to derive words that are divisible by 3, i.e. that have
remainder 0, we only allow the removal of that single nonterminal X when the remainder is 0,
i.e. when X = A.

7

