PROGRAMMING LANGUAGES AND COMPUTATION

Week 2: Context Free Grammars

* 1. Consider the following CFG G with start symbol R:

= XRX|S
aTb | bTa
n= XTX|X|e
i= alb

V!
Il

(a) What are the non-terminals of G?
(b) What are the terminals of G?
(c) Give three strings in L(G).

(d) Give three strings not in L(G).
(€) True or false: T — aba.

(f) True or false: T —* aba.

(g) Trueor false: T — T.

(h) True or false: T —* T.

(i) True or false: XXX —* aba.
(j) True or false: X —* aba.

(k) True or false: T »* XX.

(D True or false: T —-* XXX.

(m) True or false: S —»* €.

Solution

@ R,S,T,X
(b) a,b

(¢) ab, ba, aab

The syntax of the Brischeme programming language (ignoring whitespace) is given by the

CFG with:

e Terminals: 0,1,...,9, a, b, ...

not, or, and, #t, #f.

* Nonterminals: Prog, Form, SExpr, Ident, Literal, Num, Bool, Digit, LChar, IdChar, Primop.

* The production rules are:
Prog

Form

SExpr

Ident
LChar
IdChar

Literal
Bool
Num

Digit

Primop

,%,A,B, ...

Form*

SExpr
(define Ident SExpr)

Literal

Ident

(SExpr SExpr*)

(Primop SExpr*)

(lambda (Ident*) SExpr)

LChar IdChar*

albl- |z
albl---[z[A[B]---|Z[!]?]_
Bool | Num

#t | #f

Digit Digit*

0[1]---1]9
+|-]*|/|and|or|not]|<]|=

Figure 1: Brischeme (ignoring whitespace).

,Z, L L2 <,=,+,—, %, /,(,), define, lambda,

(d) aa, bb, €
(e) false
(f) true
(g) false
(h) true
() true
() false
(k) true
(D true

(m) false

* 2. Figure 1 contains a grammar for the Brischeme language from this week’s lab sheet.

You will need to read the section Grammars can Express Sequences from the end of in the
course notes to understand the notation Form*, SExpr*, Ident* and IdChar* from this grammar.
Unfortunately, I did not have time to cover this in the lecture.

Which of the following are valid Brischeme programs (i.e. strings in the language of that gram-
mar)? You do not have to give the derivations (but you should work through them in your head).

(@) (define x 32) (+ 4 x)

(b) (define x 32) (+ 4 y)

© (define x 32) (+ 4 5x)

(d) (define aC3! 32) (+ 4 aC31)
(e) (define AC3!32) (+ 4 AC3!)
() (+ (define x 32) x 4)

(g (lambda x (+ x x))

(h) (define f (lambda (xy) (+ x (* 2 y))))
@ (lambda (x b) (+ x (not b))
() (lambda (x b) (if x))

(k) (lambda (x b) ((if b + -) 2 3))

(D ((lambda () 3))

https://uob-coms20007.github.io/notes/syntax/writing-grammars.html#grammars-can-express-sequences

Solution

This question is a little unfair because I have been inconsistent on how I use whitespace (a
question with such ambiguity would not appear in an exam). On the one hand, I told you that we
essentially ignore whitespace for now, and on the other it seems to crucial to understand some of
these examples. We will discuss whitespace in Week 3.

(@) yes
(b) yes

(c) no - identifiers cannot start with a digit. However, if we really ignore whitespace then it is
possible to parse (+ 4 5x) as (+ 4 5 x) which is a valid s-expression.

(d) no - identifiers cannot contain a digit (although this is a discrepency with the version of
Brischeme used in the implementation)

(e) no - identifiers must start with a lowercase letter.

(f) no - define is not derivable from SExpr, so cannot be nested in another s-expression. How-
ever, if we really ignore whitespace, then this could be understood as (+ (defi ne x 32) x 4),
which is a valid s-expression.

(g) no - formal parameters to a lambda function must be parenthesized. However, if we really
ignore whitespace, then this could be understood as (lam bda x (+ x x)), which is a valid
s-expression.

(h) yes
@) yes
() yes
(k) no - + and - are not derivable from SExpr

(1) yes

** 3 Design CFGs for the following programming language lexemes over the ASCII alphabet. You will
find it convenient to use abbreviations like - -- to help present the expressions compactly.

(@) A C program identifier is any string of length at least 1 containing only letters (a’-'z’, lower
and uppercase), digits (‘0’-'9’) and the underscore, and which begins with a letter or the
underscore.

(b) An integer literal is any string taking one of the following forms:
* a non-empty sequence of digits (decimal)
* a non-empty sequence of characters from ‘0'—'9’,‘a’‘e’ (upper or lowercase) that are
preceded by “0x” (hexadecimal)

* a non-empty sequence of bits ‘0’ and ‘1’ that are preceded by “Ob” (binary)

Solution

(@) This is one way to describe it, I will write terminal symbols in terminal type to distinguish

them:

U= on

LM

LM |DM |e
albl|---[z[_|A[B]---]Z
0|1|...|9

(b) One straightforward way is as follows (here I use terminal type for the terminal symbols
to distinguish them from nonterminals):

~NNWmE2QIT 200

D|H|B

ND|N

0|1|...|9

0xG

AG | A
Nlalb|---[e[A|B]---|E
0bZ

YZ|Y

01

* 4, Consider the following grammar, which describes the structure of statements in an imperative

programming language.

Prog

Stmt

Stmts

Stmt Stmts (1)
if exp then Stmt else Stmt (2)
while exp do Stmt (3)
skip 4)
id < exp (5)
{Stmt Stmts} (6)
; Stmt Stmts (7)
€ (8)

In it expressions appear only as a terminal symbols exp because the structure of expressions is not
important to the exercises. In total, the terminal symbols are: if, then, else, while, do, skip, id, exp,
the left and right braces, the end-of-input marker and the semicolon. The rules are numbered
to make constructing the parse tables easier. The language of this grammar (start symbol Prog)

includes strings such as:

while exp do id « exp

i.e. strings that show the control structure of the program without specifying the particular

expressions involved.

The nullable, first and follow maps for the nonterminals in this grammar are as follows:

Nonterminal | Nullable? First Follow
Prog X if, while, skip, id, {
Stmt X if, while, skip, id, { | else, ;, }
Stmts Ng ; }

(@) For each rule X ::= a numbered (1) — (8), compute First(a), the set of terminal symbols
that can start any string derivable from the rule right-hand side a.

(b) Construct the parsing table for the grammar.

(c) Isthe grammar LL(1)?

Solution
@
First(Stmt Stmts) = if, while, skip, id {
First(if exp then Stmt else Stmt) = if
First(while exp do Stmt) = while
First(skip) = skip
First(id < exp) = id
First({Stmt Stmts}) = |{
First(; Stmt Stmts) = ;
First(e) =
(b)
Nonterminal | if | exp | then | else | while | do | skip |id | ; | { | }
Prog 1 1 1 1 1
Stmt 2 3 4 5 6
Stmts 7 8
(¢) Yes.

* 5. Consider now the following grammar:

Prog = Stmt Stmts (1)
Stmt = if bexp then Stmt else Stmt (2)
| while bexp do Stmt (3)

| skip 4)

| id « aexp (5)

| Stmt Stmts (6)

Stmts = ; Stmt Stmts (7)
| e (8)

This grammar is the same as the previous one, except that braces have been removed in rule 6.
The Nullable, First and Follow maps for this grammar can be tabulated as follows.

Nonterminal | Nullable? First Follow
Prog X if, while, skip, id
Stmt X if, while, skip, id | ;, else
Stmts v ; ;, else

(@) For each rule X ::= a numbered (1) — (8), compute First(a), the set of terminal symbols
that can start any string derivable from the rule right-hand side a.

(b) Construct the parsing table for this grammar.

(c) Isthe grammar LL(1)?

Solution

@

(1) First(Stmt Stmts) if, while, skip, id
(2) First(if exp then Stmt else Stmt) = if
(3) First(while exp do Stmt) = while
(4) First(skip) = skip
(5) First(id < exp) = id
(6) First(Stmt Stmts) = if, while, skip, id
(7) First(; Stmt Stmts) = ;
(8) First(e)
(b) The parsing table is as follows:
Nonterminal | $ | if | bexp | then | else | while | do | skip | id | aexp | ;
Prog 1 1 1 1
Stmt 2,6 3,6 4,6 5,6
Stmts 8 8 7,8
(c) No.

** 6, Give CFGs for the following languages. The later parts are more difficult than 2-star.

(@) All odd length strings over {a, b}.
(b) All strings over {a, b} that contain aab as a substring.

(c) The set of strings over {a, b} with more a than b. Hint: every string w with at least as many
a as b (possibly the same number of a as b) can be characterised inductively as follows.

Either:

* wisjusta

* or, w is of shape avb with v containing at least as many a as b
* or, w is of shape bva with v containing at least as many a as b

* or, w is of shape v,v, with v; and v, each separately containing at least as many a as

b

* or, w is the empty string

(d) The complement of the language {a"b" | n > 0} over {a, b}. Hint: express "not of shape
a"b" for some n" into one or more positive (i.e. without using not or similar) conditions.

e) {v#w]|v,we{a,b}* and the reverse of v is a substring of w}, over {a, b, #}.

Solution

@

(b)

©

(d)

(e)

S = XSX|X
X = alb
S = XSX|aab
X == al|ble

Here we dedicate a nonterminal T to describe the inductive characterisation given in the
hint and then use S to force an extra a.

S u= TaT
T alaTb|bTa|TT |e

When you are asked to give the complement, or otherwise to describe something according
to a negated condition, it is best to translate it immediately into one or more positive
conditions because CFG have no direct way to express negation. In this case, not of shape
a"b™ means either:

* The word has all the a before any b but there are strictly more a than b (nonterminal
R),
* or, the word has all the a before any b, but there are more b than a (nonterminal T),
* or, the word has a b occurring before an a (non-terminal U).
x= R|T|U
AaRb | a
aAl e
aTbB | b
bB | e
XbXaX
n= aX |bX|e

X O~ n
Il

Strings in this language have the following shape: v#w;vfw, where w; and w, are
completely arbitrary. We need to match v to vR letter by letter, so this is best done by
a single nonterminal (7). The “middle” of the string generated by this non-terminal
(between the matching pieces of v and its reverse) will contain the # and, to the right of
it, any arbitrary substring w,. Finally, the whole string has an arbitrary suffix w,. We can
describe this as follows:

S == TX
X = aX|bX|e
T == aTa|bThb|#X

