
Programming Languages and Computation

Week 2: Context Free Grammars

* 1. Consider the following CFG G with start symbol R:

R ::= XRX | S
S ::= aT b | bTa
T ::= X T X | X | ε
X ::= a | b

(a) What are the non-terminals of G?

(b) What are the terminals of G?

(c) Give three strings in L(G).

(d) Give three strings not in L(G).

(e) True or false: T → aba.

(f) True or false: T →∗ aba.

(g) True or false: T → T .

(h) True or false: T →∗ T .

(i) True or false: X X X →∗ aba.

(j) True or false: X →∗ aba.

(k) True or false: T →∗ X X .

(l) True or false: T →∗ X X X .

(m) True or false: S→∗ ε.

Solution

(a) R, S, T , X

(b) a, b

(c) ab, ba, aab

1

The syntax of the Brischeme programming language (ignoring whitespace) is given by the
CFG with:

• Terminals: 0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z , _, !, ?, <, =, +, −, ∗, /, (,), define, lambda,
not, or, and, #t, #f.

• Nonterminals: Prog, Form, SExpr, Ident, Literal, Num, Bool, Digit, LChar, IdChar, Primop.

• The production rules are:

Prog ::= Form∗

Form ::= SExpr

| (define Ident SExpr)

SExpr ::= Literal

| Ident

| (SExpr SExpr∗)

| (Primop SExpr∗)

| (lambda (Ident∗) SExpr)

Ident ::= LChar IdChar∗

LChar ::= a | b | · · · | z

IdChar ::= a | b | · · · | z | A | B | · · · | Z | ! | ? | _

Literal ::= Bool | Num

Bool ::= #t | #f

Num ::= Digit Digit∗

Digit ::= 0 | 1 | · · · | 9

Primop ::= + | - | * | / | and | or | not | < | =

Figure 1: Brischeme (ignoring whitespace).

2

(d) aa, bb, ε

(e) false

(f) true

(g) false

(h) true

(i) true

(j) false

(k) true

(l) true

(m) false

* 2. Figure 1 contains a grammar for the Brischeme language from this week’s lab sheet.

You will need to read the section Grammars can Express Sequences from the end of in the
course notes to understand the notation Form∗, SExpr∗, Ident∗ and IdChar∗ from this grammar.
Unfortunately, I did not have time to cover this in the lecture.

Which of the following are valid Brischeme programs (i.e. strings in the language of that gram-
mar)? You do not have to give the derivations (but you should work through them in your head).

(a) (define x 32) (+ 4 x)

(b) (define x 32) (+ 4 y)

(c) (define x 32) (+ 4 5x)

(d) (define aC3! 32) (+ 4 aC3!)

(e) (define AC3! 32) (+ 4 AC3!)

(f) (+ (define x 32) x 4)

(g) (lambda x (+ x x))

(h) (define f (lambda (x y) (+ x (* 2 y))))

(i) (lambda (x b) (+ x (not b)))

(j) (lambda (x b) (if x))

(k) (lambda (x b) ((if b + -) 2 3))

(l) ((lambda () 3))

3

https://uob-coms20007.github.io/notes/syntax/writing-grammars.html#grammars-can-express-sequences

Solution

This question is a little unfair because I have been inconsistent on how I use whitespace (a
question with such ambiguity would not appear in an exam). On the one hand, I told you that we
essentially ignore whitespace for now, and on the other it seems to crucial to understand some of
these examples. We will discuss whitespace in Week 3.

(a) yes

(b) yes

(c) no – identifiers cannot start with a digit. However, if we really ignore whitespace then it is
possible to parse (+ 4 5x) as (+ 4 5 x) which is a valid s-expression.

(d) no – identifiers cannot contain a digit (although this is a discrepency with the version of
Brischeme used in the implementation)

(e) no – identifiers must start with a lowercase letter.

(f) no – define is not derivable from SExpr, so cannot be nested in another s-expression. How-
ever, if we really ignore whitespace, then this could be understood as (+ (defi ne x 32) x 4),
which is a valid s-expression.

(g) no – formal parameters to a lambda function must be parenthesized. However, if we really
ignore whitespace, then this could be understood as (lam bda x (+ x x)), which is a valid
s-expression.

(h) yes

(i) yes

(j) yes

(k) no – + and - are not derivable from SExpr

(l) yes

** 3. Design CFGs for the following programming language lexemes over the ASCII alphabet. You will
find it convenient to use abbreviations like · · · to help present the expressions compactly.

(a) A C program identifier is any string of length at least 1 containing only letters (’a’–’z’, lower
and uppercase), digits (’0’–’9’) and the underscore, and which begins with a letter or the
underscore.

(b) An integer literal is any string taking one of the following forms:
• a non-empty sequence of digits (decimal)
• a non-empty sequence of characters from ‘0’–‘9’,‘a’–‘e’ (upper or lowercase) that are
preceded by “0x” (hexadecimal)

• a non-empty sequence of bits ‘0’ and ‘1’ that are preceded by “0b” (binary)

Solution

4

(a) This is one way to describe it, I will write terminal symbols in terminal type to distinguish
them:

S ::= LM
M ::= LM | DM | ε
L ::= a | b | · · · | z | _ | A | B | · · · | Z
D ::= 0 | 1 | · · · | 9

(b) One straightforward way is as follows (here I use terminal type for the terminal symbols
to distinguish them from nonterminals):

S ::= D | H | B
D ::= N D | N
N ::= 0 | 1 | · · · | 9
H ::= 0xG
G ::= AG | A
A ::= N | a | b | · · · | e | A | B | · · · | E
B ::= 0bZ
Z ::= Y Z | Y
Y ::= 0 | 1

* 4. Consider the following grammar, which describes the structure of statements in an imperative
programming language.

Prog ::= Stmt Stmts (1)

Stmt ::= if exp then Stmt else Stmt (2)
| while exp do Stmt (3)
| skip (4)
| id← exp (5)
| {Stmt Stmts} (6)

Stmts ::= ; Stmt Stmts (7)
| ε (8)

In it expressions appear only as a terminal symbols exp because the structure of expressions is not
important to the exercises. In total, the terminal symbols are: if, then, else, while, do, skip, id, exp,
the left and right braces, the end-of-input marker and the semicolon. The rules are numbered
to make constructing the parse tables easier. The language of this grammar (start symbol Prog)
includes strings such as:

while exp do id← exp

i.e. strings that show the control structure of the program without specifying the particular
expressions involved.
The nullable, first and follow maps for the nonterminals in this grammar are as follows:

Nonterminal Nullable? First Follow
Prog × if, while, skip, id, {
Stmt × if, while, skip, id, { else, ;, }
Stmts ✓ ; }

(a) For each rule X ::= α numbered (1) – (8), compute First(α), the set of terminal symbols
that can start any string derivable from the rule right-hand side α.

5

(b) Construct the parsing table for the grammar.

(c) Is the grammar LL(1)?

Solution

(a)
First(Stmt Stmts) = if, while, skip, id {

First(if exp then Stmt else Stmt) = if
First(while exp do Stmt) = while

First(skip) = skip
First(id← exp) = id

First({Stmt Stmts}) = {
First(; Stmt Stmts) = ;

First(ε) =

(b)

Nonterminal if exp then else while do skip id ; { }
Prog 1 1 1 1 1
Stmt 2 3 4 5 6
Stmts 7 8

(c) Yes.

* 5. Consider now the following grammar:
Prog ::= Stmt Stmts (1)

Stmt ::= if bexp then Stmt else Stmt (2)
| while bexp do Stmt (3)
| skip (4)
| id← aexp (5)
| Stmt Stmts (6)

Stmts ::= ; Stmt Stmts (7)
| ε (8)

This grammar is the same as the previous one, except that braces have been removed in rule 6.
The Nullable, First and Follow maps for this grammar can be tabulated as follows.

Nonterminal Nullable? First Follow
Prog × if, while, skip, id
Stmt × if, while, skip, id ;, else
Stmts ✓ ; ;, else

(a) For each rule X ::= α numbered (1) – (8), compute First(α), the set of terminal symbols
that can start any string derivable from the rule right-hand side α.

6

(b) Construct the parsing table for this grammar.

(c) Is the grammar LL(1)?

Solution

(a)
(1) First(Stmt Stmts) = if, while, skip, id
(2) First(if exp then Stmt else Stmt) = if
(3) First(while exp do Stmt) = while
(4) First(skip) = skip
(5) First(id← exp) = id
(6) First(Stmt Stmts) = if, while, skip, id
(7) First(; Stmt Stmts) = ;
(8) First(ε) =

(b) The parsing table is as follows:
Nonterminal $ if bexp then else while do skip id aexp ;

Prog 1 1 1 1
Stmt 2, 6 3, 6 4, 6 5, 6
Stmts 8 8 7, 8

(c) No.

** 6. Give CFGs for the following languages. The later parts are more difficult than 2-star.

(a) All odd length strings over {a, b}.

(b) All strings over {a, b} that contain aab as a substring.

(c) The set of strings over {a, b} with more a than b. Hint: every string w with at least as many
a as b (possibly the same number of a as b) can be characterised inductively as follows.
Either:

• w is just a

• or, w is of shape avb with v containing at least as many a as b

• or, w is of shape bva with v containing at least as many a as b

• or, w is of shape v1v2 with v1 and v2 each separately containing at least as many a as
b

• or, w is the empty string

(d) The complement of the language {an bn | n ≥ 0} over {a, b}. Hint: express "not of shape
an bn for some n" into one or more positive (i.e. without using not or similar) conditions.

(e) {v#w | v, w ∈ {a, b}∗ and the reverse of v is a substring of w}, over {a, b, #}.

7

Solution

(a)
S ::= XSX | X
X ::= a | b

(b)
S ::= XSX | aab
X ::= a | b | ε

(c) Here we dedicate a nonterminal T to describe the inductive characterisation given in the
hint and then use S to force an extra a.

S ::= TaT
T ::= a | aT b | bTa | T T | ε

(d) When you are asked to give the complement, or otherwise to describe something according
to a negated condition, it is best to translate it immediately into one or more positive
conditions because CFG have no direct way to express negation. In this case, not of shape
an bn means either:

• The word has all the a before any b but there are strictly more a than b (nonterminal
R),

• or, the word has all the a before any b, but there are more b than a (nonterminal T),
• or, the word has a b occurring before an a (non-terminal U).

S ::= R | T | U
R ::= AaRb | a
A ::= aA | ε
T ::= aT bB | b
B ::= bB | ε
U ::= X bX aX
X ::= aX | bX | ε

(e) Strings in this language have the following shape: v#w1vRw2 where w1 and w2 are
completely arbitrary. We need to match v to vR letter by letter, so this is best done by
a single nonterminal (T). The “middle” of the string generated by this non-terminal
(between the matching pieces of v and its reverse) will contain the # and, to the right of
it, any arbitrary substring w1. Finally, the whole string has an arbitrary suffix w2. We can
describe this as follows:

S ::= T X
X ::= aX | bX | ε
T ::= aTa | bT b | #X

8

