
Programming Languages and Computation

Week 5: Denotational Semantics and
Induction

1 Denotational Semantics

* 1. Compute the value of the following arithmetic expressions in the state σ =
[x 7→ −1, y 7→ 11, z 7→ 10]. Your answer should be explicit about the steps you take and make
reference to the definition of the denotation function.

(a) (x + y)− z

(b) x ∗ (12− z)

(c) x − (z − 1)

Solution

(a)

⟦(x + y)− z⟧A(σ) = ⟦x + y⟧A(σ)− ⟦z⟧A(σ)
= (⟦x⟧A(σ) + ⟦y⟧A(σ))− ⟦z⟧A(σ)
= (σ(x) +σ(y))−σ(z)
= ((−1) + 11)− 10

= 0

(b)

⟦x ∗ (12− z)⟧A(σ) = ⟦x⟧A(σ) · ⟦12− z⟧A(σ)

= ⟦x⟧A(σ) · (⟦12⟧A(σ)− ⟦z⟧A(σ))
= σ(x) · (12−σ(z))
= (−1) · (12− 10)

= −2

1

(c)

⟦x − (z − 1)⟧A(σ) = ⟦x⟧A(σ)− ⟦z − 1⟧A(σ)

= ⟦x⟧A(σ)− (⟦z⟧A(σ)− ⟦1⟧A(σ))
= σ(x)− (σ(z)− 1)

= (−1)− (10− 1)

= −10

* 2. Compute the value of the following arithmetic expressions in the state σ = [x 7→ 11, y 7→ 12].
Your answer should be explicit about the steps you take and make reference to the definition of
the denotation function.

(a) (x + y)− z

(b) x ∗ (12− z)

(c) x − (z − 1)

Solution

This question depends on the convention that variables not explicitly mentioned by the state are
assigned the value 0.

(a)

⟦(x + y)− z⟧A(σ) = ⟦x + y⟧A(σ)− ⟦z⟧A(σ)
= ⟦x⟧A(σ) + ⟦y⟧A(σ)− ⟦z⟧A(σ)
= σ(x) +σ(y)−σ(z)
= (11+ 12)− 0

= 23

(b)

⟦x ∗ (12− z)⟧A(σ) = ⟦x⟧A(σ) · ⟦12− z⟧A(σ)

= ⟦x⟧A(σ) · (⟦12⟧A(σ)− ⟦z⟧A(σ))
= σ(x) · (12−σ(z))
= 11 · (12− 0)

= 132

(c)

⟦x − (z − 1)⟧A(σ) = ⟦x⟧A(σ)− ⟦z − 1⟧A(σ)

= ⟦x⟧A(σ)− (⟦z⟧A(σ)− ⟦1⟧A(σ))
= σ(x)− (σ(z)− 1)

= 11− (0− 1)

= 12

2

* 3. Compute the value of the following Boolean expressions in the state σ = [x 7→ 11, y 7→ 12]. Your
answer should be explicit about the steps you take and make reference to the definition of the
denotation function.

(a) (x + y ≤ z) && true

(b) !(x ∗ y = z) ∥ x = 11

(c) x ≤ y && y ≤ x

Solution

(a)
⟦(x + y ≤ z) && true⟧B(σ) = ⟦x + y ≤ z⟧B(σ)∧ ⟦true⟧B(σ)

= (⟦x + y⟧A(σ)≤ ⟦z⟧A(σ))∧⊤
= (⟦x⟧A(σ) + ⟦y⟧A(σ)≤ ⟦z⟧A(σ))∧⊤
= (σ(x) +σ(y)≤ σ(z)) ∧⊤
= (11+ 12≤ 0)∧⊤
=⊥∧⊤
=⊥

(b)

⟦!(x ∗ y = z) ∥ x = 11⟧B(σ) = ⟦!(x ∗ y = z)⟧B(σ)∨ ⟦x = 11⟧B(σ)

= ¬⟦x ∗ y = z⟧B(σ)∨ (⟦x⟧A(σ) = ⟦11⟧A(σ))

= ¬(⟦x ∗ y⟧A(σ) = ⟦z⟧A(σ))∨ (⟦x⟧A(σ) = ⟦11⟧A(σ))

= ¬(⟦x⟧A(σ) ∗ ⟦y⟧A(σ) = ⟦z⟧A(σ))∨ (⟦x⟧A(σ) = ⟦11⟧A(σ))

= ¬(σ(x) ∗σ(y) = σ(z))∨ (σ(x) = 11)

= ¬(11 ∗ 12= 0)∨ (11= 11)

= ¬⊥∨⊤
=⊤∨⊤
=⊤

(c)

⟦x ≤ y && y ≤ x⟧B(σ) = ⟦x ≤ y⟧B(σ)∧ ⟦y ≤ x⟧A(σ)

= ⟦x⟧A(σ)≤ ⟦y⟧A(σ)∧ (⟦y⟧A(σ)≤ ⟦x⟧A(σ))
= σ(x)≤ σ(y)∧σ(y)≤ σ(x)
= 11≤ 12∧ 12≤ 11

=⊤∧⊥
=⊥

3

The next questions relate to when arithmetic and Boolean expressions are syntactically equiva-
lent or semantically equivalent. Two arithmetic or Boolean expressions are syntactically equivalent
if they have exactly the same abstract syntax tree and semantically equivalent is they denote the
same function. Remember that two functions are equal if, and only if, they have the same value
on every input.

* 4. Which of the following arithmetic expressions are syntactically equivalent and which are semanti-
cally equivalent?

(a) x ∗ 3

(b) x ∗ 1

(c) x + (x + x)

(d) (x + (x)) + x

(e) x + ((x) + x)

(f) x + (y ∗ 0)

Solution

The only syntactically equivalent expressions are (c) and (e). However, the expressions (a), (c),
(d), and (e) are semantically equivalent, and likewise so are (b) and (f).

* 5. Consider the Boolean expression x ≤ 2 && y ≤ 3. Find a semantically equivalent expression that
does not use the && operator.

Solution

Lots of possible answers, e.g. !(!(x ≤ 2) ∥ !(x ≤ 3)).

* 6. Find a state in which the arithmetic expressions x ∗ 2 and x + 3 evaluate to the same value.
Explain why they are not semantically equivalent.

Solution

A state in which they evaluate to the same value is [x 7→ 3]. They are not semantically equivalent,
however, as they evaluate to distinct values in the state [x 7→ 1].

** 7. Suppose that e1 ∈A and e2 ∈A are semantically equivalent arithmetic expressions. Prove that
e1 + e2 is semantically equivalent to e1 ∗ 2. Your answer should make explicit reference to the
denotation function.

Solution

To show that e1+e2 is semantically equivalent to e1∗2, we must show that, for any state σ ∈ State,
⟦e1 + e2⟧A(σ) = ⟦e1 ∗ 2⟧A(σ). Let σ ∈ State be a state. By expanding the definitions, we can see
that ⟦e1+ e2⟧A(σ) = ⟦e1⟧A(σ)+⟦e2⟧A(σ) and that ⟦e1 ∗2⟧A(σ) = ⟦e1⟧A(σ) ·2. As e1 and e2 are
semantically equivalent, we know that ⟦e1⟧A(σ) = ⟦e2⟧A(σ). Therefore, we have that:

⟦e1 + e2⟧A(σ) = ⟦e1⟧A(σ) + ⟦e2⟧A(σ)
= ⟦e1⟧A(σ) + ⟦e1⟧A(σ)
= ⟦e1⟧A(σ) ∗ 2
= ⟦e1 ∗ 2⟧A(σ)

4

Therefore, we can conclude that the two expressions are semantically equivalent as required.

** 8. Suppose that e1+1 and e2+1 are two arithmetic expressions that are semantically equivalent for
some e1, e2 ∈A. Prove that e1 and e2 are also semantically equivalent.

Solution

To show that e1 and e2 are semantically equivalent let σ ∈ State be an arbitrary state. We have
that ⟦e1 + 1⟧A(σ) = ⟦e2 + 1⟧A(σ). It follows, by definition, that ⟦e1⟧A(σ) + 1 = ⟦e2⟧A(σ) + 1.
Therefore, ⟦e1⟧A(σ) = ⟦e2⟧A(σ) as required.

** 9. Suppose that e1 ∗ e2 and e1 ∗2 are two arithmetic expressions that are not semantically equivalent
for some arithmetic expressions e1, e2 ∈A.

(a) Prove that e2 cannot be semantically equivalent to 2.

(b) Find concrete examples of expressions e1, e2 ∈ A such that e1 ∗ e2 and e1 ∗ 2 are not
semantically equivalent but where there exists a state σ ∈ State such that ⟦e2⟧A(σ) = 2.

Solution

(a) There exists a state σ ∈ State such that ⟦e1⟧A(σ) · ⟦e2⟧A(σ) ̸= ⟦e1⟧ · 2. Therefore, there
exists a state in which ⟦e2⟧A(σ) ̸= 2. Thus, e2 cannot be semantically equivalent to 2.

(b) There are many possible answers, but the point is that even though e2 cannot be equivalent
to 2 there may still be states in which it evaluates to 2. For example, if e1 = 1 and e2 = x ,
then we have that both e1 ∗ e2 and e1 ∗ 2 evaluate to 2 in the state σ = [x 7→ 2].

5

** 10. Let us suppose we want to add a new construct to the language of arithmetic expressions:

A→ x | n | · · · | let x = A in A

An expression let x = e1 in e2 using this construct should evaluate the sub-expression e2 in a state
where the variable x is mapped to the value of e1. For example, the expression let x = 2 in x + y
when evaluated in the state [x 7→ 3, y 7→ 2] should be 4.

Extend the definition of the denotation function ⟦·⟧A with an equation for this construct. You
may find it useful to use the notation σ[x 7→ n] to represent the state σ updated such that
(σ[x 7→ n])(x) = n and (σ[x 7→ n])(y) = σ(y) for all y ̸= x . You do not need to change any other
equations.

Solution

The required equation is:

⟦let x = e1 in e2⟧A(σ) = ⟦e2⟧A(σ[x 7→ ⟦e1⟧A(σ)])

The key things to note are that the state is updated according to the value of e1 as specified
and that the equation is recursive in that the denotation for new construct is defined in terms of
the denotation of its sub-expressions.

** 11. Now let us suppose we extend the language of arithmetic expressions with a different operator:

A→ x | n | · · · | B ? A : A

An instance of this ternary operator e1?e2 : e3 for some Boolean expression e1 ∈ B and arithmetic
expressions e2, e3 ∈A behaves as e2 in states where e1 is true and behaves as e3 otherwise.

Extend the definition of the denotation function ⟦·⟧A with an equation for this construct. Your
answer may make reference to the denotation function for Boolean expressions.

Solution

The required equation is:

⟦e1 ? e2 : e3⟧A(σ) =

¨

⟦e2⟧A(σ) if ⟦e1⟧B(σ)
⟦e3⟧A(σ) otherwise

2 Proof by Induction

* 12. Consider the exponential function for natural numbers with the following recursive definition:

x0 = 1

xn+1 = x · xn

Prove by induction that (x · y)z = xz · yz for any x , y, z ∈ N. You may assume that multiplication
satisfies the usual laws of associativity and commutativity.

Solution

We shall prove that (x · y)z = xz · yz for any x , y, z ∈ N by induction over z ∈ N.

6

• In the base case, we have that (x · y)0 = 1 and x0 · y0 = 1 ·1= 1. Therefore, (x · y)0 = x0 · y0

as required.
• Let us suppose (x ·y)z = xz ·yz holds for some z ∈ N. Wemust show that (x ·y)z+1 = xz+1·yz+1

holds. By definition, (x · y)z+1 = (x · y)·(x · y)z. It then follows from our induction hypothesis
that (x · y)z+1 = (x · y) · xz · yz. Therefore, (x · y)z+1 = xz+1 · yz+1 as required.

** 13. The height of an arithmetic expression is defined recursively as follows:

height(n) = 1
height(x) = 1

height(e1 + e2) = 1+max{height(e1), height(e2)}
height(e1 − e2) = 1+max{height(e1), height(e2)}
height(e1 ∗ e2) = 1+max{height(e1), height(e2)}

(a) Prove by structural induction over arithmetic expressions that height(e)> 0 for all arith-
metic expressions e ∈A.

(b) Prove by structural induction over arithmetic expressions that 2height(e)−1 ≥ #FV(e) for all
arithmetic expressions e ∈A where #FV(e) is the number of free variables appearing in
that expression.

Solution

(a) We shall prove that height(e) > 0 for all arithmetic expressions e ∈ A by induction as
follows:

• In the case of a variable or a numeric literal, the height is clearly greater than 0.
• In the inductive cases, we have that induction hypotheses height(e1), height(e2)> 0.
It then follows that 1+max{height(e1), height(e2)}> 0 as required.

(b) We shall prove that 2height(e)−1 ≥ #FV(e) for all arithmetic expressions e ∈A by induction
as follows:

• In the case of a variable x ∈ Var, the height is 1 and #FV(x) = 1. Therefore,
2height(x)−1 = 20 = 1 and thus 2height(x)−1 ≥ 1 as required.

• Similarly, in the case of a numeric literal n ∈ Z, the height is 1 and #FV(x) = 0.
Therefore, 2height(n)−1 = 20 = 1 and thus 2height(n)−1 ≥ 0 as required.

• Now consider an expression of the form e1 + e2 where, inductively, we know that
2height(e1)−1 ≥ #FV(e1) and 2height(e2)−1 ≥ #FV(e2). By definition, height(e1 + e2) is
equal to 1+max{height(e1), height(e2)}. Therefore, 2height(e1+e2)−1 is at least as large
as both 2height(e1) and 2height(e2). It then follows from the induction hypotheses, that
2height(e1+e2)−1 is at least as large as both 2 · #FV(e1) and 2 · #FV(e2). Finally, as
#FV(e1) +#FV(e2) ≥ #FV(e1 + e2), we have that 2height(e1+e2)−1 ≥ #FV(e1 + e2) as
required.

• The cases for subtraction and multiplication are analogous to that of addition.

** 14. If x is a variable and e1 and e2 are arithmetic expressions, then we write e1[e2/x] for the expression
that results from substituting e2 for x in the expression e1. Formally, this operation it is defined by

7

recursion over the expression e1 as follows:

n[e/x] = n

y[e/x] =

¨

e if x = y

y otherwise
(e1 + e2)[e/x] = e1[e/x] + e2[e/x]
(e1 − e2)[e/x] = e1[e/x]− e2[e/x]
(e1 ∗ e2)[e/x] = e1[e/x] ∗ e2[e/x]

(a) Compute the value of the expression (y − x)[z/x] in the state [x 7→ 1, y 7→ 2, z 7→ 3].

(b) Find a state σ such that ⟦y − x⟧A(σ) evaluates to the same answer you got in part (a).
What is the relationship between this state and the state [x 7→ 1, y 7→ 2, z 7→ 3]?

(c) Prove by structural induction over expressions, for any state σ ∈ State, any pair of arith-
metic expressions e1, e2 ∈ A and any variable x ∈ Var, we have that:

⟦e1[e2/x]⟧A(σ) = ⟦e1⟧A(σ[x 7→ ⟦e2⟧A(σ)]).

Remember that e1 may be an arbitrary variable.

Solution

(a) The expression (y − x)[z/x] is by definition equal to y − z. Therefore, evaluating in the
state [x 7→ 1, y 7→ 2, z 7→ 3] leads to the value −1.

(b) Under the state [x 7→ 3, y 7→ 2, z 7→ 3], the expression y − x evaluates to −1. This state is
derived by replacing the value for x with the value for z, thus capturing the behaviour of
the substitution [z/x].

(c) We shall prove by structural induction that:

⟦e1[e2/x]⟧A(σ) = ⟦e1⟧A(σ[x 7→ ⟦e2⟧A(σ)]).

for any state σ ∈ State, any pair of arithmetic expressions e1, e2 ∈ A and any variable
x ∈ Var by structural induction over e1.

• Suppose e1 is a variable y ∈ Var. In order to correctly apply the substitution, we need
to know whether the variable y is equal to the variable x . Therefore, there are two
subcases to consider:

– If y = x , then we have that ⟦y[e2/x]⟧A(σ) = ⟦e2⟧A(σ). On the other hand,
⟦y⟧A(σ[x 7→ ⟦e2⟧A(σ)]) is by definition ⟦e2⟧A(σ). Therefore, ⟦y[e2/x]⟧A(σ) =
⟦y⟧A(σ[x 7→ ⟦e2⟧A(σ)]) as required.

– Otherwise, let us suppose that y ̸= x . In this case, ⟦y[e2/x]⟧A(σ) = σ(y) as the
expression y is unaffected by the substitution Likewise, ⟦y⟧A(σ[x 7→ ⟦e2⟧A(σ)])
is equal to σ(y) as both the states σ and σ[x 7→ ⟦e2⟧A(σ)] assign the same
value to the variable y. Therefore, we have that ⟦y[e2/x]⟧A(σ) = ⟦y⟧A(σ[x 7→
⟦e2⟧A(σ)]) as required.

8

• Now let us suppose e1 is a numeric literal n ∈ Z. In this case, ⟦n[e2/x]⟧A(σ) = n and,
likewise, ⟦n⟧A(σ[x 7→ ⟦e2⟧]) = n. Therefore, ⟦n[e2/x]⟧A(σ) = ⟦n⟧A(σ[x 7→ ⟦e2⟧])
as required.

• Now let us suppose e1 is of the form e3 + e4 for some arithmetic expressions e3, e4 ∈
A. Then ⟦(e3 + e4)[e2/x]⟧A(σ) = ⟦e3[e2/x]⟧A(σ) + ⟦e4[e2/x]⟧A(σ) by definition.
Our induction hypotheses tell us that ⟦e3[e2/x]⟧A(σ) = ⟦e3⟧A(σ[x 7→ ⟦e2⟧]) and
likewise for e4. Therefore, we have that ⟦(e3 + e4)[e2/x]⟧A(σ) = ⟦e3⟧A(σ[x 7→
⟦e2⟧A(σ)])+ ⟦e4⟧A(σ[x 7→ ⟦e2⟧A(σ)]). It follows then that ⟦(e3+ e4)[e2/x]⟧A(σ) =
⟦e3 + e4⟧A(σ[x 7→ ⟦e2⟧A(σ)]) as required.

• The cases of subtraction and multiplication are analogous to that of addition.

** 15. Write down the induction principle for Boolean expressions. Try to generalise from the
induction principle for arithmetic expressions as it appears in the reference notes (https:
//uob-coms20007.github.io/notes/semantics/induction.html).
Hint: the cases for Boolean expressions of the form e1 ≤ e2 and e1 = e2 are not inductive cases as
the sub-expressions are not actually Boolean expressions.

Solution

The induction principle for Boolean expressions states that P(e) is true of all e ∈ B whenever:

• P(true) is true;

• P(false) is true;

• P(e1 && e2) is true for any e1, e2 ∈ B such that P(e1) and P(e2) is true;

• P(e1 ∥ e2) is true for any e1, e2 ∈ B such that P(e1) and P(e2) is true;

• P(!e) is true for any e ∈ B such that P(e) is true;

• P(e1 = e2) is true for any e1, e2 ∈A;

• And, P(e1 ≤ e2) is true for any e1, e2 ∈A.

*** 16. We extend the notion of free variables of an arithmetic expression to Boolean expressions. Formally,
we define a function FV : B→ P(Var) from Boolean expressions to sets of variables by recursion
over the structure of expressions as follows:

FV(true) = ;
FV(false) = ;

FV(e1 ≤ e2) = FV(e1)∪ FV(e2)

FV(e1 = e2) = FV(e1)∪ FV(e2)

FV(!e) = FV(e)

FV(e1 && e2) = FV(e1)∪ FV(e2)

FV(e1 ∥ e2) = FV(e1)∪ FV(e2)

(a) Find two Boolean expressions e1, e2 ∈ B that are semantically equivalent, i.e. they evaluate
to the same value on all states, but for which FV(e1) ̸= FV(e2).

9

https://uob-coms20007.github.io/notes/semantics/induction.html
https://uob-coms20007.github.io/notes/semantics/induction.html

(b) Prove by induction that for all Boolean expressions e ∈ B and pair of states σ, σ′ ∈ State
that:

⟦e⟧B(σ) = ⟦e⟧B(σ
′)

where ∀x ∈ FV(e).σ(x) = σ′(x).

You may assume the fact that the analogous result holds for arithmetic expressions in your
answer.

Solution

(a) The Boolean expressions true and true ∥ x ≤ y are semantically equivalent but have a
different set of free variables.

(b) We shall prove by induction that for all Boolean expressions e ∈ B and pair of states
σ, σ′ ∈ State that:

⟦e⟧B(σ) = ⟦e⟧B(σ
′)

where ∀x ∈ FV(e).σ(x) = σ′(x).
• In the case of the constant true, we have that ⟦true⟧B(σ) = ⊤ regardless of σ. In
particular, ⟦true⟧B(σ) = ⟦true⟧B(σ′) for any two states σ, σ′ ∈ State.

• The case of the constant false is analogous to that of true.
• Now consider a Boolean expression of the form e1 ≤ e2 where e1 ∈ A and e2 ∈ A
are arithmetic expressions. Let σ, σ′ ∈ State be states such that ∀x ∈ FV(e1 ≤
e2).σ(x) = σ′(x). By definition, FV(e1 ≤ e2) = FV(e1) ∪ FV(e2). Therefore, we
also know that ∀x ∈ FV(e1).σ(x) = σ′(x) and likewise for e2. It then follows that
⟦e1⟧A(σ) = ⟦e1⟧A(σ′) and likewise for e2. Thus, ⟦e1 ≤ e2⟧B(σ) = ⟦e1 ≤ e2⟧B(σ′) as
required.

• The case of Boolean expressions of the form e1 = e2 is analogous to the preceding
case.

• Now consider a Boolean expression of the form !e where, inductively, we know
that ⟦e⟧B(σ) = ⟦e⟧B(σ′) whenever ∀x ∈ FV(e).σ(x) = σ′(x). Let σ, σ′ ∈ State
be states such that ∀x ∈ FV(!e).σ(x) = σ′(x). As FV(!e) = FV(e), we have that
∀x ∈ FV(e).σ(x) = σ′(x). Therefore, the induction hypothesis applies. It then
follows that:

⟦!e⟧B(σ) = ¬⟦e⟧B(σ)
= ¬⟦e⟧B(σ′)
= ⟦!e⟧B(σ

′)

as required.
• Now consider a Boolean expression of the form e1 && e2 where, inductively, we
know that ⟦e1⟧B(σ) = ⟦e1⟧B(σ′) whenever ∀x ∈ FV(e1).σ(x) = σ′(x) and likewise
for e2. Let σ, σ′ ∈ State be states such that ∀x ∈ FV(e1 && e2).σ(x) = σ′(x). As
FV(e1 && e2) ⊇ FV(e1), FV(e2), we have that ∀x ∈ FV(e1).σ(x) = σ′(x) and likewise

10

for e2. Therefore, the induction hypotheses apply. It then follows that:
⟦e1 && e2⟧B(σ) = ⟦e1⟧B(σ)∧ ⟦e2⟧B(σ)

= ⟦e1⟧B(σ
′)∧ ⟦e2⟧B(σ

′)

= ⟦e1 && e2⟧B(σ
′)

as required.
• The case of Boolean expressions of the form e1 ∥ e2 is analogous to the preceding
case.

** 17. Define a recursive function for substitution acting on Boolean expressions, you may wish to model
your answer on substitution for arithmetic expressions from Question 14.
Prove that your definition satisfies the property:

⟦e1[e2/x]⟧B(σ) = ⟦e1⟧B(σ[x 7→ ⟦e2⟧A(σ)]).

for any Boolean expression e1 ∈ B, arithmetic expression e2 ∈A, and any variable x ∈ Var. You
may assume the analogous property shown in Question 14.

Solution

The definition should be:

true[e/x] = true
false[e/x] = false
(!e1)[e2/x] = !(e1[e2/x])

(e1 && e2)[e3/x] = e1[e3/x] && e2[e3/x]
(e1 ∥ e2)[e3/x] = e1[e3/x] ∥ e2[e3/x]
(e1 = e2)[e3/x] = e1[e3/x] = e2[e3/x]
(e1 ≤ e2)[e3/x] = e1[e3/x]≤ e2[e3/x]

The proof of correctness is by structural induction and is analogous to Question 14, with cases
for equality and comparison being derived from the property shown in Question 14.

*** 18. The set of contexts is defined by the following grammar:
C → ϵ | A+ C | C + A | A− C | C − A | A∗ C | C ∗ A

where A is an arbitrary arithmetic expression. We write C for the set of contexts.

Given a context C ∈ C and an arithmetic expression e ∈A, we write C[e] ∈A for the arithmetic
expression that is derived by replacing the “ϵ” in C with the expression e. For example, (x + ϵ)[y]
is the expression x + y. Formally, this operation is defined by recursion over contexts:

ϵ[e1] = e1

(e2 + C)[e1] = e2 + C[e1]

(C + e2)[e1] = C[e1] + e2

(e2 − C)[e1] = e2 − C[e1]

(C − e2)[e1] = C[e1]− e2

(e2 ∗ C)[e1] = e2 ∗ C[e1]

(C ∗ e2)[e1] = C[e1] ∗ e2

11

(a) Consider the arithmetic expressions x + x and x ∗ 2 and the context y + ϵ. Show that
(y + ϵ)[x + x] and (y + ϵ)[x ∗ 2] are semantically equivalent.

(b) Now suppose e1 and e2 are arbitrary arithmetic expressions that are semantically equivalent.
Show that (y + ϵ)[e1] and (y + ϵ)[e2] are semantically equivalent as well.

(c) Prove by structural induction that, for any context C ∈ C, and any two semantically
equivalent arithmetic expressions e1 ∈A and e2 ∈A, that C[e1] and C[e2] are semantically
equivalent.

Solution

(a) The expression (y + ϵ)[x + x] is equal to y + x + x and the expression (y + ϵ)[x ∗ 2] is
equal to the expression y + (x ∗ 2). Both these expressions denote the function that maps
a state σ to the integer σ(y) + 2σ(x). Therefore, they are semantically equivalent.

(b) Let e1 and e2 be semantically equivalent arithmetic expressions. The expression (y +ϵ)[e1]
maps a state σ to the value σ(y)+⟦e1⟧A(σ) and, likewise the expression (y +ϵ)[e2] maps
a state σ to the value σ(y)+⟦e2⟧A(σ). As e1 and e2 are semantically equivalent, we know
that ⟦e1⟧A(σ) = ⟦e2⟧A(σ) for all states. It then follows that (y + ϵ)[e1] and (y + ϵ)[e2]
are semantically equivalent as required.

(c) We shall prove that, for any context C ∈ C, and any two semantically equivalent arithmetic
expressions e1 ∈ A and e2 ∈ A, that C[e1] and C[e2] are semantically equivalent by
induction on the context:

• In the base case with a context ϵ, we must show that ϵ[e1] is semantically equivalent
to ϵ[e2] given that e1 and e2 are semantically equivalent. As the expression ϵ[e1] is
equal to e1 and likewise for e2, this case is trivial.

• Now consider a context of the form e3 + C . We must show that (e3 + C)[e1] is
semantically equivalent to (e3+C)[e2] given that e1 and e2 are semantically equivalent.
By definition, (e3 + C)[e1] = e3 + C[e1] and likewise (e3 + C)[e2] = e3 + C[e2]. By
induction, we know that C[e1] is semantically equivalent to C[e2]. It then follows that
e3 + C[e1] is semantically equivalent to e3 + C[e2] and, therefore, that (e3 + C)[e1] is
semantically equivalent to (e3 + C)[e2] as required.

• The other cases are analogous to the preceding case.

12

	Denotational Semantics
	Proof by Induction

