
Programming Languages and Computation

Week 7: Operational Semantics & Hoare
Logic

1 Operational Semantics

This section is about the small-step operational semantics of While programs as given by the
relation → ⊆ C × C where the configurations are either a statement and a state or a state
C = (S× State)∪ State, which is defined by these following rules:

〈skip, σ〉 → σ 〈x ← e, σ〉 → σ[x 7→ ⟦e⟧A(σ)]

〈S1, σ1〉 → σ2

〈S1; S2, σ1〉 → 〈S2, σ2〉

〈S1, σ1〉 → 〈S′1, σ2〉

〈S1; S2, σ1〉 → 〈S′1; S2, σ2〉

⟦e⟧B(σ) =⊤〈if e then S1 else S2, σ〉 → 〈S1, σ〉

⟦e⟧B(σ) =⊥〈if e then S1 else S2, σ〉 → 〈S2, σ〉

⟦e⟧B(σ) =⊥〈while e do S, σ〉 → σ

⟦e⟧B(σ) =⊤〈while e do S, σ〉 → 〈S; while e do S, σ〉

Figure 1: Operational semantics for While.

* 1. Calculate the terminal state and write down a trace for the statement x ← 1; {x ← 2; x ← 3} with
the initial state [] using the rules in Figure 1. Remember, variables are assigned 0 by default.

Solution

The terminal state is [x 7→ 3] and the corresponding trace is:

〈x ← 1; {x ← 2; x ← 3}, []〉
→ 〈x ← 2; x ← 3, [x 7→ 1]〉
→ 〈x ← 3, [x 7→ 2]〉
→ [x 7→ 3]

1

* 2. Calculate the terminal state and write down a trace for the statement {x ← 1; x ← x ∗2}; x ← x+ y
with the initial state [x 7→ 2, y 7→ 2] using the rules in Figure 1.

Solution

The terminal state is [x 7→ 4, y 7→ 2] and the corresponding trace is:

〈{x ← 1; x ← x ∗ 2}; x ← x + y, [x 7→ 2, y 7→ 2]〉
→ 〈x ← x ∗ 2; x ← x + y, [x 7→ 1, y 7→ 2]〉
→ 〈x ← x + y, [x 7→ 2, y 7→ 2]〉
→ [x 7→ 4, y 7→ 2]

* 3. Find a state σ such that 〈x ← 1; y ← x ∗2, []〉 →∗ σ. You should provide the corresponding trace.
Solution

The state [x 7→ 1, y 7→ 2] satisfies the requirement with the associated trace:

〈x ← 1; y ← x ∗ 2, []〉
→ 〈y ← x ∗ 2, [x 7→ 1]〉
→ [x 7→ 1, y 7→ 2]

* 4. Compute the final state for the program if x ≤ y then x ← y else y ← x when executed in each
of the following states:

• []

• [x 7→ 2, y 7→ 3]

• [x 7→ 4, y 7→ 2]

Solution

• []

• [x 7→ 3, y 7→ 3]

• [x 7→ 4, y 7→ 4]

* 5. Find a state σ ∈ State such that while !(x ≤ −1) do x ← x + d, [d 7→ −1] →∗ σ. You should
provide the corresponding trace.

Solution

The state [d 7→ −1, x 7→ −1] will satisfy the requirements. The associated trace is:

〈while !(x ≤ −1) do x ← x + d, [d 7→ −1]〉
→ 〈x ← x + d; while !(x ≤ −1) do x ← x + d, [d 7→ −1]〉
→ 〈while !(x ≤ −1) do x ← x + d, [d 7→ −1, x 7→ −1]〉
→ [d 7→ −1, x 7→ −1]

2

* 6. Find a state σ ∈ State such that 〈x ← 2; y ← x ∗ y , σ〉 →∗ [x 7→ 2, y 7→ 4]. You should provide
the corresponding trace.

Solution

The state [y 7→ 2] will satisfy the requirements. The associated trace is:
〈x ← 2; y ← x ∗ y, [y 7→ 2]〉
→ 〈y ← x ∗ y, [x 7→ 2, y 7→ 2]〉
→ [x 7→ 2, y 7→ 4]

** 7. Suppose e ∈ B is a Boolean expression that is semantically equivalent to false. Prove that
〈while e do S, σ〉 → σ for any state σ ∈ State.

Solution

As e ∈ B is semantically equivalent to false. We have that ⟦e⟧B(σ) = ⊥ for any state σ ∈ State.
Therefore, we have that 〈while e do S, σ〉 → σ for any state σ ∈ State as required.

** 8. Suppose S1, S2 ∈ S are two statements such that 〈S1, σ〉 →∗ σ′ and 〈S2, σ〉 →∗ σ′ for some states
σ, σ′ ∈ State. Prove that 〈if e then S1 else S2, σ〉 →∗ σ′ for any Boolean expression e ∈ B.

Solution

Let e ∈ B be some Boolean expression and σ, σ′ ∈ State be two states. Let us consider two cases:
• Suppose ⟦e⟧B(σ) is true. Then we have the following trace:

〈if e then S1 else S2, σ〉
→ 〈S1, σ〉
→∗ σ′

• Suppose, otherwise, that ⟦e⟧B(σ) is false. Then equally we have the following trace of the
form:

〈if e then S1 else S2, σ〉
→ 〈S2, σ〉
→∗ σ′

** 9. Suppose we introduce a new language construct “do S while e” where S ∈ S is a statement
and e ∈ B is a Boolean expression. The operational semantics for this construct is given by the
following inference rules:

〈do S while e, σ〉 → 〈S; if e then do S while e else skip, σ〉

(a) Find a state σ ∈ State such that 〈do x ← x+1 while x ≤ 1, []〉 →∗ σ and give the associated
trace.

(b) For a given statement S ∈ S and a Boolean expression e ∈ B find a While program that is
equivalent to the program do S while e but does not use the new construct. That is, find a
statement S′ ∈ S such that:

〈S′, σ〉 →∗ σ′⇔〈do S while e, σ〉 →∗ σ′

You do not need to prove that your answer is correct but should provide a trace for

3

〈S′, []〉 →∗ σ where S is given to be the statement x ← x + 1, where e is given to be the
expression x ≤ 1, and where σ is the state from part (a).

Solution

(a) The state is [x 7→ 2] and the trace is:

〈do x ← x + 1 while x ≤ 1, []〉
→ 〈x ← x + 1; if x ≤ then do x ← x + 1 while x ≤ 1else skip, []〉
→ 〈if x ≤ 1then do x ← x + 1 while x ≤ 1else skip, [x 7→ 1]〉
→ 〈do x ← x + 1 while x ≤ 1, [x 7→ 1]〉
→ 〈x ← x + 1; if x ≤ then do x ← x + 1 while x ≤ 1else skip, [x 7→ 2]〉
→ 〈if x ≤ 1then do x ← x + 1 while x ≤ 1else skip, [x 7→ 2]〉
→ 〈skip, [x 7→ 2]〉
→ [x 7→ 2]

(b) The statement S; while e do S is equivalent.

〈x ← x + 1; while x ≤ 1 do x ← x + 1, []〉
→ 〈while x ≤ 1 do x ← x + 1, [x 7→ 1]〉
→ 〈x ← x + 1; while x ≤ 1 do x ← x + 1, [x 7→ 1]〉
→ 〈while x ≤ 1 do x ← x + 1, [x 7→ 2]〉
→ [x 7→ 2]

** 10. Suppose we introduce a new language construct for x do S where S ∈ S is a statement and x ∈ Var
is a variable The operational semantics for this construct is given by the following inference rules:

σ(x)≤ 0
〈for x do S, σ〉 → σ

σ(x)> 0
〈for x do S, σ1〉 → 〈S; for x do S, σ[x 7→ σ(x)− 1]〉

(a) Find a state σ ∈ State such that 〈for x do y ← y + x; x ← x − 2, [x 7→ 3]〉 →∗ σ and give
the associated trace.

(b) For a given statement S ∈ S and a variable x ∈ Var find a While program that is equivalent
to the program for x do S but does not use the new construct. That is, find a statement
S′ ∈ S such that:

〈S′, σ〉 →∗ σ′⇔〈for x do S, σ〉 →∗ σ′

You do not need to prove that your answer is correct but should provide a trace for
〈S′, [x 7→ 3]〉 →∗ σ where S is given to be the statement y ← y + x; x ← x − 2 and σ is
the state from part (a).

Solution

4

(a)
〈for x do y ← y + x; x ← x − 2, [x 7→ 3]〉
→ 〈y ← y + x; x ← x − 2; for x do y ← y + x; x ← x − 2, [x 7→ 2]〉
→ 〈x ← x − 2; for x do y ← y + x; x ← x − 2, [x 7→ 2, y 7→ 2]〉
→ 〈for x do y ← y + x; x ← x − 2, [x 7→ 0, y 7→ 2]〉
→ [x 7→ 0, y 7→ 2]

(b) The statement while !(x ≤ 0) do {x ← x − 1; S} is equivalent.

〈while !(x ≤ 0) do x ← x − 1; y ← y + x; x ← x − 2, [x 7→ 3]〉
→ 〈x ← x − 1; y ← y + x; x ← x − 2; while !(x ≤ 0) do x ← x − 1; y ← y + x; x ← x − 2, [x 7→ 3]〉
→∗ 〈while !(x ≤ 0) do x ← x − 1; y ← y + x; x ← x − 2, [x 7→ 0, y 7→ 2]〉
→ [x 7→ 0, y 7→ 2]

*** 11. Show that, if y /∈ FV(e1) and x /∈ FV(e2), then the statements x ← e1; y ← e2 and y ← e2; x ← e1
equivalent in the sense that 〈x ← e1; y ← e2, σ〉 →∗ σ′ if and only if 〈y ← e2; x ← e1, σ〉 →∗ σ′.
You may use results from the previous worksheet.

Solution

This is most straightforward proven from the fact that ⟦e1⟧A(σ) = ⟦e1⟧A(σ′) if σ(x) = σ′(x) for
all x ∈ FV (e1), and likewise for e2.

Note that 〈x ← e1; y ← e2, σ0〉 →∗ σ2 just if σ1 = σ0[x 7→ ⟦e1⟧A(σ0)] and σ2 = σ1[y 7→
⟦e2⟧A(σ1)]. And, likewise 〈y ← e2; x ← e1, σ0〉 →∗ σ′2 just if σ′1 = σ0[y 7→ ⟦e2⟧A(σ0)] and
σ′2 = σ

′
1[x 7→ ⟦e1⟧A(σ′1)].

To show thatσ2 is equal toσ′2, wemust show that ⟦e1⟧A(σ0) = ⟦e1⟧A(σ′1) and that ⟦e2⟧A(σ1) =
⟦e2⟧A(σ0). Using the previous result, and the fact that σ0(z) = σ′1(z) for all z ̸= y, we have
that ⟦e1⟧A(σ0) = ⟦e1⟧A(σ′1) as y /∈ FV(e1). And likewise ⟦e2⟧A(σ1) = ⟦e2⟧A(σ0) follows from
x /∈ FV(e2). Therefore, σ2 = σ′2 as required.

*** 12. The set of variables modified by a statement is defined by recursion as follows:

mod(skip) = ;
mod(x ← e) = {x}
mod(S1; S2) =mod(S1)∪mod(S2)
mod(if e then S1 else S2) =mod(S1)∪mod(S2)
mod(while e do S) =mod(S)

(a) Prove that if 〈S1, σ1〉 → σ2 then σ1(x) = σ2(x) for all x /∈mod(S1).

(b) Prove that if 〈S1, σ1〉 → 〈S1, σ2〉 then mod(S2) ⊆ mod(S1) and σ1(x) = σ2(x) for all
x /∈mod(S1). You may use the previous result.

(c) Prove that if 〈S1, σ1〉 →∗ σ2 then σ1(x) = σ2(x) for all x /∈ mod(S1). You may use the
previous results, and the fact that γ1→∗ γ2 if, and only if, γ1→n γ2 for some n≥ 0.

Solution

5

(a) First, we shall prove that 〈S1, σ1〉 → σ2 then σ1(x) = σ2(x) for all x /∈mod(S1). There are
only three cases for this:

• If 〈skip, σ〉 → σ then we immediately have that σ(x) = σ(x) for all x /∈mod(skip) as
required.

• If 〈x ← e, σ〉 → σ[x 7→ ⟦e⟧A(σ)] then we have that σ(y) = σ[x 7→ ⟦e⟧A(σ)](y) for
all y /∈mod(x ← e) as x ∈mod(x ← e).

• If 〈while e do S, σ〉 → σ when ⟦e⟧B(σ) = ⊥, then again we immediately have that
σ(x) = σ(x) for all x /∈mod(skip) as required.

(b) To complete the second part of this proof, you need to use induction over the statement.
However, it is only relevant in the sequence case(s) — the induction hypothesis is not
important for any other case.
We shall prove that if 〈S1, σ1〉 → 〈S1, σ2〉 then mod(S2) ⊆mod(S1) and σ1(x) = σ2(x) for
all x /∈mod(S1) by structural induction over S1.

• In the case of skip or an assignment, there is nothing to prove as it steps to a terminal
configuration.

• For the statement S1; S2, we have 〈S1; S2, σ1〉 → 〈S′1; S2, σ2〉 when 〈S1σ1〉 →
〈S′1, σ2〉. By induction, we have that mod(S′1) ⊆ mod(S1) and σ1(x) = σ2(x) for all
x /∈mod(S1). It then follows that mod(S′1; S2) ⊆mod(S1; S2) and σ1(x) = σ2(x) for
all x /∈mod(S1; S2) as mod(S1) ⊂mod(S1; S2).
If, on the other hand, we have 〈S1; S2, σ1〉 → 〈S2, σ2〉 when 〈S1σ1〉 → σ2〉, the
by the previous result σ1(x) = σ2(x) for all x /∈ mod(S1) and thus by extension
σ1(x) = σ2(x) for all x /∈mod(S1; S2) as mod(S1) ⊂mod(S1; S2).

• For the if e then S1 else S2, we either have 〈if e then S1 else S2, σ〉 → 〈S1, σ〉 or
〈if e then S1 else S2, σ1〉 → 〈S2, σ〉. In either case, we have that mod(S1), S2 ⊆
mod(if e then S1 else S2). Additionally,σ(x) = σ(x) for all x /∈mod(if e then S1 else S2).

• The case of while is analogous to the former.

(c) The final part of this exercise is to prove that 〈S1, σ1〉 →n σ2 then σ1(x) = σ2(x) for all
x /∈mod(S1). This is done by induction over n, i.e. the length of the trace.

• The base case is absurd as to reach a termination configuration from a non-termination
configuration requires at least one step.

• Suppose that 〈S1, σ1〉 → γ and γ→n σ2. There are two cases to consider:
– γ is the terminal configuration σ2. In which case, by the previous results, σ1(x) =
σ2(x) for all x /∈mod(S1) as required.

– γ is another non-terminal configuration 〈S2, σ3〉. In which case, by the previous
results, σ1(x) = σ3(x) for all x /∈ mod(S1) and mod(S1) ⊆ mod(S2). Then, by
the induction hypothesis, σ3(x) = σ2(x) for all x /∈ mod(S1). It follows that
σ1(x) = σ2(x) for all x /∈mod(S1) as required.

Hoare Logic

* 13. Consider the following invalid Hoare triple: {x ≤ y} y ← y ∗ 2 {x ≤ y}. Find an initial state
σ ∈ State and a trace from the configuration 〈y ← y ∗ 2, σ〉 that contradicts this triple.

6

Solution

Any state with 2y < x ≤ y suffices, in particular both x and y must be negative.

〈y ← y ∗ 2, [x 7→ −3, y 7→ −2]〉
→ [x 7→ −3, y 7→ −4]

* 14. Find a statement S such that {true} S {z ≤ x && z ≤ y}.
Solution

There are multiple possible solutions. One is a program that calculates the minimum:

if x ≤ y then z← x else z← y

** 15. For each of the following statements, compute the strongest post-condition from the pre-condition
(∃q. x = q ∗ y) && y ≥ 0:

(a) x ← x ∗ x

(b) if y ≤ x then x ← x − y else y ← y − x

Solution

(a) Any variation of: ∃x ′. (∃q. x ′ = q ∗ y) && x = x ′ ∗ x ′ && y ≥ 0. More simply, y ≥ 0 &&
∃q. x = (q ∗ y) ∗ (q ∗ y).

(b) Any variation of:

(∃x ′. y ≤ x ′ && (∃q. x ′ = q ∗ y) && y ≥ 0 && x = x ′ − y)
∥ (∃y ′. y ′ > x && (∃q. x = q ∗ y ′) && y ′ ≥ 0 && y = y ′ − x)

More simply, (0 ≤ y && 0 ≤ x && (∃q. x = q ∗ y)) ∥ (y > 0 && y + x ≥ 0 && (∃q. x =
q ∗ (y + x))).

** 16. Using your answers to the previous question, for each of the following Hoare triples determine
whether they are valid or not. You should justify your answer.

(a) {(∃q. x = q ∗ y) && y ≥ 0} x ← x ∗ x {(∃q. x = q ∗ y)}

(b) {(∃q. x = q ∗ y) && y ≥ 0} x ← x ∗ x {x ≥ y}

(c) {(∃q. x = q∗ y) && y ≥ 0} if y ≤ x then x ← x− y else y ← y− x {(∃q. x = q∗ y) && y ≥ 0}

Solution

(a) This is valid as the strongest post-condition ∃x ′. (∃q. x ′ = q ∗ y) && x = x ′ ∗ x ′ && y ≥ 0
implies ∃q. x = q ∗ y. In particular, suppose x ′ = q ∗ y and x = x ′ ∗ x ′. Then x =
(q ∗ y) ∗ (q ∗ y) = (q2 ∗ y) ∗ y as required.

7

(b) This is not valid as the strongest post-condition ∃x ′. (∃q. x ′ = q ∗ y) && x = x ′ ∗ x ′ && y ≥ 0
does not imply x ≥ y. In particular, suppose x ′ = q ∗ y and x = x ′ ∗ x ′. However, we could
have q = 0 and y = 1, then x = 0 and we do not have x ≥ y. If we additionally knew that
q ̸= 0, then it would be valid.

(c) This is not valid as the strongest post-condition:

(∃x ′. y ≤ x ′ && (∃q. x ′ = q ∗ y) && y ≥ 0 && x = x ′ − y)
∥ (∃y ′. y ′ > x && (∃q. x = q ∗ y) && y ′ ≥ 0 && y = y ′ − x)

does not imply (∃q. x = q ∗ y) && y ≥ 0.

In particular, out of the post-condition of both branches ∃x ′. y ≤ x ′ && (∃q. x ′ = q ∗ y) &&
y ≥ 0 && x = x ′ − y and ∃y ′. y ′ > x && (∃q. x = q ∗ y ′) && y ′ ≥ 0 && y = y ′ − x , only the
former implies (∃q. x = q ∗ y) && y ≥ 0:

• Suppose y ≥ x ′ and x ′ = q ∗ y and y ≥ 0 where x = x ′ − y. Then x = (q− 1) ∗ y and
thus (∃q. x = q ∗ y) && y ≥ 0. As y ≥ 0 by assumption, the desired conclusion holds.

• Now suppose that y ′ > x and x = q ∗ y ′ and y ′ ≥ 0 where y = y ′ − x . We have that
y + x > x and so y ≥ 0. However, we cannot conclude that x = q ∗ y for some q given
that x = q ∗ (y + x) for some q. For instance, if x = 3, y = −2 and q = 3, we have
x = q ∗ (y + x) but x is not a multiple of y.

** 17. Suppose S1, S2, S3 ∈ S are statements satisfying the following Hoare triples:

• {x ≤ y} S1 {y ≤ x && x ≤ 0}

• {∀z. x ∗ z = 0} S2 {y = z}

• {x > y && z = x} S3 {y ≤ x}

Then which of the following triples can be derived? You should briefly justify your answer.

(a) {x ≤ y && x = 0} S1; S2 {y = z}

(b) {z = x} if x ≤ y then S1 else S2 {y ≤ x}

(c) {x ≤ y} S1; if y = 0 then S2 else y ← z {y = z}

Solution

(a) This triple cannot be derived as we only know that x = 0 prior to the execution of S1.
Therefore, we cannot conclude that ∀z. x ∗ z = 0 prior to the execution of S2.

(b) For the original question {z = x} if x ≤ y then S1 else S2 {y ≤ x}, the answer is false — it
is not a valid triple as the second branch does not give us that y ≤ x . However, this was a
typo... The question was meant to be: {z = x} if x ≤ y then S1 else S3 {y ≤ x}. In which
case the triple can be derived as we have that: {x ≤ y && z = x} S1 {y ≤ x} via weakening
for the first branch.

(c) This triple can be derived. First, {∀z. x ∗ z = 0} S2 {y = z} can be weakened to {x =
0} S2 {y = z}. Therefore, {y ≤ x && x ≤ 0} if y = 0 then S2 else z ← y {y = z}. So, by

8

sequencing {x ≤ y} S1 {y ≤ x && x ≤ 0} and {y ≤ x && x ≤ 0} if y = 0 then S2 else z ←
y {y = z}. We have {x ≤ y} S1; if y = 0 then S2 else y ← z {y = z} as required.

*** 18. The rule of consequence allows us to weaken a Hoare triple for more general context. However, it
is also useful to be able to adapt Hoare triples to contexts with other unrelated variables. This
can be done through the constancy rule:

{P} S {Q}
FV(R)∩mod(S) = ;

{P && R} S {Q && R}

Where FV(P) for a predicate P ⊆ State is defined as the set of variables x ∈ Var such that σ ∈ P
but σ[x 7→ n] /∈ P for some state σ ∈ State and n ∈ Z; intuitively, those variables whose value
effect whether a state is in the set of not and mod(S) is the set of variables appearing anywhere
in the program.

(a) Suppose that S1 and S2 are two statement such that {P1} S1 {Q1} and {P2} S2 {Q2} where:
• FV(P1), FV(Q1) ⊆ FV(S1);
• FV(P2), FV(Q2) ⊆ FV(S2);
• And FV(S1)∩ FV(S2) = ;.

Justify how {P1 ∧ P2} S1; S2 {Q1 ∧Q2} can be derived from the constancy rule.

(b) Suppose that P ⊆ State is some set of states. Prove that, if σ ∈ P and σ(x) = σ′(x) for all
x ∈ FV(P) and #{x ∈ Var | σ(x) ̸= σ′(x)} is finite, then σ′ ∈ P. You may wish to prove it
by induction on #{x ∈ Var | σ(x) ̸= σ′(x)}.

(c) Prove that the rule of constancy holds that is:

{P} S {Q} ⇒ {P && R} S {Q && R}

for any statement S, and predicates P, Q, R ⊆ State such that FV(R) ∩mod(S) = ;. You
may wish to use the result from Question 12.

Solution

(a) By the constancy rule, we have that {P1 && P2} S1 {Q1 && P2} as FV(P2) ⊆ FV(S2) which
is disjoint from FV(S1). Likewise, we have that {Q1 && P2} S2 {Q1 && Q2}. Therefore,
{P1 && P2} S1; S2 {Q1 && Q2} as required.

(b) Let us write dis(σ, σ′) for #{x ∈ Var | σ(x) ̸= σ′(x)}.
Let P ⊆ State be a set of states. We shall prove by induction on n that if:

φ(n) : ∀σ, σ′ ∈ State.dis(σ, σ′) = n and ∀x ∈ FV(P).σ(x) = σ′(x) then σ′ ∈ P

• In the base case, we have that there are no variables such thatσ(x) ̸= σ′(x). Therefore,
σ = σ′ and σ′ ∈ P by assumption.

• Now suppose φ(n) holds for some n. Consider two states σ, σ′ ∈ State such that
dis(σ, σ′) = n+ 1 and ∀x ∈ FV(P).σ(x) = σ′(x). Let y be some variable such that
σ(y) ̸= σ′(y) (which must exists as they disagree on n + 1 variables). Note that
y /∈ FV(P), else we’d contradict the assumption that ∀x ∈ FV(P).σ(x) = σ′(x).

9

Now consider the state σ[y 7→ σ′(y)]. We have that dis(σ[y 7→ σ′(y)], σ′) = n and
σ[y 7→ σ′(y)](x) = σ′(x) for all x ∈ FV(P). Suppose that σ[y 7→ σ′(y)] /∈ P. Then,
by definition, y ∈ FV(P), which is contradictory. Thus, σ[y 7→ σ′(y)] ∈ P. By φ(n),
therefore, σ′ ∈ P.

(c) Question 12 tells us that if 〈S, σ〉 →∗ σ′, then σ(x) = σ′(x) for all x /∈ mod(S). Now
suppose σ ∈ P && R, i.e. it meets the pre-condition. From the rule’s premise, we have
that σ′ ∈ Q. To show that σ′ ∈ R, we must consider the fact that mod(S) ∩ FV(R) = ;.
Therefore, σ(x) = σ′(x) for all x ∈ FV(R). As σ and σ′ can only differ on variables in S,
by the previous exercise, σ′ ∈ R. Therefore, σ′ ∈ P && R as required.

10

	Operational Semantics

