
Programming Languages and Computation

Brischeme Prototype Coursework
This document contains an introduction to, and reference for, the Brischeme language. This language
and its interpreter will form part of an assessed coursework in a future version of this unit. In
academic year 2025/26, this coursework is not assessed, but it is nevertheless an essential component
in the teaching of the first part of the unit.

1 Setup

You will need git and a working OCaml development environment. If you are using the lab
machines, git is available by default and you can obtain a development environment by executing
the following command in a terminal:
$ module load ocaml

If you want to obtain an OCaml development environment on your own machine, follow
the all instructions at https://ocaml.org/docs/installing-ocaml. Ensure you complete
all three parts of the setup: installing opam, initialising opam and installing the platform tools.

Choose a convenient directory to work in and clone the git repository containing the Brischeme
interpreter:
$ git clone https://github.com/uob-coms20007/brischeme.git
$ cd brischeme

This will create a new directory brischeme containing the OCaml implementation and place you
inside it. The tool dune is used to manage the development. To build the code, execute:
$ dune build

To run the interpreter, execute:
$ dune exec brischeme

This will drop you into a read-eval-print-loop (REPL) in which you can input Brischeme expressions
and have them evaluated. For example:
Brischeme
> (define x 3)
> (+ x 4)
7

However, you will notice that the interpreter does not support line editing. That is, once you
have entered some characters you cannot go back and edit them using e.g. backspace or the left
arrow key. However, this facility can be easily provided by a utility program such as socat. The
utility socat is already available on the lab machines. If you don’t have it on your own machine
then you may have to install from your favourite package manager (e.g. Homebrew, apt-get etc).
Once you have it, you can run:
$ socat READLINE EXEC:"dune exec brischeme"

and you will then find that line editing is available, and this makes interacting with the REPL
much easier.

For convenience, there is a script ‘brischeme’ in the root of the respository which simply
encapsulates the above shell command. You may need to chmod +x ./brischeme to be able to
execute it.

1

https://ocaml.org/docs/installing-ocaml

2 Introduction to Brischeme

Brischeme is a programming language of the Lisp family. It is most closely related to Scheme,
which was a hugely influential dialect of Lisp developed by Guy Steele and Gerald Sussman at
MIT in the 1970s. It is extremely simple, yet powerful, which derives from its basis in the untyped
λ-calculus (pronounced “lambda calculus”): programs can be distilled down to just a few basic
forms – variables, primitive constants, λ-abstractions and function applications. However, because
this is λ-calculus presented as a Lisp, you must be prepared for a lot of parentheses.

Figure 1: Lisp Cycles (https://xkcd.com/297)

A Brischeme program is essentially a sequence of definitions and expressions to be evaluated.
The expressions, called s-expressions are either atoms, lambda functions or parenthesized function
calls. Computation of an s-expression involves reducing it to a value and in Brischeme we have
four kinds of values, integers, booleans, functions and the degenerate value nil. The formal syntax
and semantics are given in Appendices A and B.

When you write an expression into the REPL it will be evaluated and the resulting value
printed. Non-negative integers are written as you might imagine:
> 2025
2025

The Boolean value for true is written #t and the value for false as #f.
> #f
#f

A hallmark of Scheme languages is that all function calls are written prefix and are enclosed in
parentheses. This includes calls to the primitive operators (those that are built into the language):
+, ∗, −, /, =, and, or, not and if. This makes them extremely regular. For example, to compute
(3 ∗ 4) + 6 one writes:
> (+ (* 3 4) 6)
18

To check if two numbers are equal:
> (= 24 42)
#f

The primitive if can be used to effect control flow. It takes three arguments which are, in order,
the guard, the then-branch and the else-branch.
> (if #t 1 2)
1
> (if (not #t) 1 2)
2

2

https://xkcd.com/297

A function value is written using a version of λ-notation. For example, the function that takes
in an input x and returns its square x ∗ x can be written as:
> (lambda (x) (* x x))
(lambda (x) (* x x))

Applying a function to an input is achieved by writing the argument afterwards and enclosing in
parentheses:
> ((lambda (x) (* x x)) 6)
36

It would be tedious to write out the definition of a function every time you wanted to use it,
so there is a mechanism to define variable names at the top-level. Afterwards, the name and the
expression it abbreviates can be used interchangeably.
> (define square (lambda (x) (* x x)))
> (square 6)
36

Recursive definitions are supported:
> (define fac (lambda (x) (if (< x 1) 1 (* x (fac (- x 1))))))
> (fac 5)
120

User-defined functions can take any number of arguments. The following is an implementation
of exponentiation x y :
> (define exp (lambda (x y) (if (= y 0) 1 (* x ((exp x) (- y 1))))))
> (exp 2 8)
256

3

3 Coursework Task

Although this coursework task can be attempted at any time, it is recommended to first complete
Week 1, Week 2 and Week 3 problems. This coursework is not assessed in 2025/26.

Consider an extension of Brischeme with a new top-level form (use fn) for dynamically loading
files containing Brischeme code. For example, with this extension, the following interaction will
be possible.

$ cat mycode.bs
(define x 3)
$ rlwrap dune exec brischeme
Brischeme
> x
RUNTIME ERROR: Evaluation undefined for x.
> (use mycode)
> x
3

To achieve this, the grammar for forms is extended with a new terminal symbol use and the
following additional production rule:

CForm ::= use ident

Evaluating the top-level form (use fn) reads in the complete text of the file whose (base) name is
fn and whose extension is .bs, parses the text as a program to produce a list of forms and then
evaluates and prints the forms.

Task: Implement this extension. Note:

(i) There is no requirement to deal gracefully with errors, such as the non-existence of
the file, but you may wish to do so.

(ii) The change required to the parsing functions is relatively straightforward, so you may
not need to generate a new parse table. However, if you prefer to do this, then a copy
of the LL(1) grammar for the language is given in AppendixC.

4

A Syntax

A.1 Lexical Structure

The lexical structure is given by the following classes:

ident Identifiers are non-empty finite sequences that start with a lowercase letter of the English
alphabet and whose other letters comprise lower and uppcase letters of the English alphabet,
digits, underscores, exclamation marks and question marks.

literal Numeric literals are non-empty sequences of digits, representing non-negative integers.
Boolean literals are #t, representing true, and #f, representing false.

primop Primitive operators are: +, −, ∗, /, =, <, not, and, or, if.

Furthermore, the following words are also reserved (cannot be identifiers): define, lambda.

A.2 Phrase Structure

The phrase structure of the language is given by the following CFG:

Prog ::= Form∗

Form ::= SExpr

| (define ident SExpr)

SExpr ::= literal

| ident

| (SExpr SExpr∗)

| (primop SExpr∗)

| (lambda (ident∗) SExpr)

5

B Semantics

In the following, we use convenient notation:

• P and Q stand for arbitary programs (sequences of s-expressions and definitions).

• S and T stand for arbitrary s-expressions.

• Ss and Ts stand for arbitrary lists of s-expressions, and we write 〈S; Ss〉 for the list which has
head S and tail Ss.

• V and W stand for arbitrary values.

• x and y stand for identifiers, and xs for a list of identifiers.

• #n and #m stand for the numeric literal whose value is the integer n and m respectively.
For, example #3 and #(2+ 1) refer to the same numeric literal, whose value is 3.

• #b for the boolean literals whose semantic value is b. For example, #t and #(t ∧ t) are two
different ways of writing the boolean literal for true.

• op stands for an arbitrary primitive operator.

Thus n and m always refer to mathematical integers, b will always refer to mathematical truth
values. On the other hand #n is our notation for the integer n written in the syntax of the
Brischeme programming language, #b is our notation for the boolean b written in Brischeme.

Values Values are fully evaluated expressions, and can be described by the following grammar:

V ::= #b | #n | (lambda (xs) S)

Stores A store is a mapping from identifiers to values. We use the notation σ and τ to stand for
an arbitrary store. We use σ(x) as the value assigned to identifier x in the store σ, and σ[x := V]
to mean the store that can be obtained from σ by mapping the identifier x to the value V .

Operational Semantics We define evaluation in three parts, and so there are three single-step
forms,⇒s,⇒ss and⇒p which have the following shapes:

• Evaluating a single step of an s-expression S with respect to a store σ of top-level definitions,
to obtain a new s-expression T :

S, σ⇒s T

• Evaluating a single step of a sequence of s-expressions Ss with respect to a store σ of
top-level definitions to obtain a new sequence of s-expressions Ts:

Ss, σ⇒ss Ts

• Evaluating a top-level program P with respect to a store σ, to obtain a new program P ′ and
a new store τ

P, σ⇒p Q,τ

These relations are defined by the rules that follow.

6

B.1 Identifiers

The evaluation of identifiers is the only s-expression evaluation rule that looks into the store:

Ident

x , σ⇒s σ(x)

B.2 Primitive Operator Calls

The if operator is special because its arguments, specifically the arguments that represent the
then and else branches, are not all evaluated to values before proceeding.

IfTrue

(if #t S T), σ⇒s S

IfFalse

(if #t S T), σ⇒s S

For other operators, we evaluate the arguments to values before actioning the operator. This
uses the rules for the evaluation of a sequence of s-expressions, which are defined shortly.

OpArgs
Ss, σ⇒ss Ts

(op, Ss), σ⇒s (op, Ts)
op ̸= if

Once the arguments have been evaluated to values, the behaviour of the rest of the primitive
operators is as expected. Note: in the rule (ArithOp) we abuse the coincidence between the syntax
of a Brischeme arithmetic operator, like + and the mathematical operator of the same name in
order to give a succinct presentation. For example, an instance of this rule is (+ #2 #4)⇒ #6.

ArithOp

(op #n #m), σ⇒ #(n⊗m)
op ∈ {+,−,∗,/, }

AndOp

(and #b1 #b2), σ⇒ #(b1 ∧ b2)

OrOp

(or #b1 #b2), σ⇒ #(b1 ∨ b2)

NotOp

(not #b), σ⇒ #(¬b)

LessOpT

(< #n #m), σ⇒ #t
n< m

LessOpF

(< #n #m), σ⇒ # f
n≥ m

EqOpT

(= V W), σ⇒ #t
V =W

EqOpF

(= V W), σ⇒ # f
V ̸=W

B.3 User-Defined Function Application

To evaluate a function application, we first must evaluate the operator. Once the operator is
known to be a user-defined function, we must then evaluate the arguments.

AppL
S,σ⇒s T

(S Ss), σ⇒s (T Ss)

AppR
Ss,σ⇒ss Ts

((lambda (xs) S) Ss), σ⇒s ((lambda (xs) S) Ts)

Only after the operator and the arguments are all values do we action the function call itself,
which relies on substitution.

7

In the following, we use the substitution notation S[V1/x1, . . . , Vn/xn] to stand for the s-
expression S but with every occurrence of variable x1 textually replaced by V1, x2 textually
replaced by V2 and so on up to xn textually replaced by Vn. This is the mechanism by which
formal parameters are replaced by actual parameters. For example:

(+ (− x #2) (∗ y #3))[#4/x , #8/y] = (+ (− #4 #2) (∗ #8 #3))

Once the operator and the arguments are evaluated to values, the function call itself can be
actioned, which involves replacing formal parameters x1, x2, . . . , xn in the function body S by the
actual parameters V1, V2, . . . , Vn that we supplied at the call site.

App

((lambda (x1, x2, . . . , xn) S) V1 V2 · · ·Vn), σ⇒ S[V1/x1, V2/x2, . . . , Vn/xn]

Thus, the following is an example of a single step of a function application according to (App):

((lambda (x , y) (+ (− x #2) (∗ y #3))) #4 #8), σ⇒ (+ (− #4 #2) (∗ #8 #3))

B.4 Evaluating a List of SExpr

Evaluating a list of s-expressions proceeds left-to-right:

StepList
S, σ⇒s T

〈S; Ss〉, σ⇒ss 〈T ; Ss〉

StepNext
Ss, σ⇒ss Ts

〈V ; Ss〉, σ⇒ss 〈V ; Ts〉

B.5 Evaluating a Program

Evaluating a program proceeds left to right, but we must also take into account that the store
can be updated by the addition of new definitions. Thus, a step of the execution of the program
consumes a store (on the left of the arrow) and produces a potentially updated store (on the right
of the arrow).

ProgSExpr
S, σ⇒s T

〈S; P〉, σ⇒p 〈T ; P〉, σ

ProgNext

〈V ; P〉, σ⇒p P, σ

ProgDefnBody
S, σ⇒s T

〈(define x S); P〉, σ⇒p 〈(define x T); P〉, σ

ProgDefnBind

〈(define x V); P〉, σ⇒p P, (σ[x := V])

8

C LL(1) Grammar

The grammar for Brischeme given in Appendix A is not LL(1), and so does not form the basis of the
parsing functions in lib/parser.ml. Instead, these functions are constructed from the equivalent
grammar:

Prog ::= Form Prog
Prog ::= eof

Form ::= Atom
Form ::= (CForm)

CForm ::= Expr
CForm ::= define ident SExpr

Atom ::= literal
Atom ::= ident

IdentList ::= ident IdentList
IdentList ::= ε

SExpr ::= Atom
SExpr ::= (Expr)

SExprList ::= SExpr SExprList
SExprList ::= ε

Expr ::= lambda (IdentList) SExpr
Expr ::= primop SExprList
Expr ::= SExpr SExprList

For convenience, this grammar is given in a format amenable to parse table generators such
as https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/, but you
will need to replace occurrences of ε with an empty double single-quote ' ' to comply with the
generator’s input syntax.

9

https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/

	Setup
	Introduction to Brischeme
	Coursework Task
	Syntax
	Lexical Structure
	Phrase Structure

	Semantics
	Identifiers
	Primitive Operator Calls
	User-Defined Function Application
	Evaluating a List of SExpr
	Evaluating a Program

	LL(1) Grammar

