
Programming Languages and Computation

Week 4: Atoms and Lists

1. In this exercise you will extend the language to include Elixir/Erlang-style atom literals (which
are a simple version of Scheme quoted symbols). The syntax of our atom literals is simply an
identifier prefixed with an apostrophe, for example ’foo or ’x2.

> ’foo
’foo
> ’foo = ’bar
#f
> ’foo = ’foo
#t

Atoms are, as their name implies, atomic, that is, they have no internal structure as far
as the programmer is concerned. The only thing you can do to an atom is to test it for
equality with something else (typically another atom). Hence, you can think of an atom as
a string that you can never take a apart, or a nullary datatype constructor (as in Haskell or OCaml).

The following refer to the lexer in lib/lexer.ml.

(a) Extend the lexer with a new kind of literal constructor called LAtom suitable for representing
an atom literal.

(b) Explain how to output an atom literal as a string in string_of_lit.

(c) Write a function lex_atom which, when called in a state where peek() = ’\’’, consumes an
atom literal and returns an appropriate token.

(d) Modify the lex_init function to dispatch to lex_atom when appropriate.

The following refer to the AST in lib/ast.ml.

(e) Extend the AST datatype sexp with a new constructor Atom of string.

(f) Explain an appropriate way to output an atom as a string in string_of_sexp.

The following refer to the parser in lib/parser.ml.

(g) Extend the eat_lit function to return an appropriate AST node when encountering an atom
literal token.

The following refer to the evaluator in lib/eval.ml.

(h) Extend the is_value function to label atom literals as values (i.e. they are already fully
evaluated).

1



2. In this exercise, you will extend Brischeme with lists, which can be done entirely within the
standard library once pairs and atoms are available. The idea is that we will use the atom literal
’nil to represent the empty list, and a list with head s and tail t will be represented by a pair
(cons s t). Consequently, the head of a given list can be extracted using car and the tail using cdr.
For example:

> (define mylist (cons 2 (cons 3 (cons 4 ’nil))))
> (car mylist)
2
> (cdr mylist)
(cons 3 (cons 4 ’nil))

Add each of the following to your standard library.

(a) Define the Brischeme function empty? which returns #t if its single argument is ’() and #f
otherwise.

(b) Define the Brischeme function map which given a function f and a list xs, returns the list
obtained from xs by applying f to every element.

> (map (lambda (x) (+ x 1)) (cons 2 (cons 3 (cons 4 ’()))))
(cons 3 (cons 4 (cons 5 ’())))

3. Define a new primitive operator list which takes any number of arguments and returns the list
containing exactly those arguments as its elements, in the same order.

> (list 2 3 4 5)
(cons 2 (cons 3 (cons 4 (cons 5 ’()))))
> (list)
’()

4. Using lists, pairs and atoms, it is straightforward to define a dictionary data structure.

(a) Define the Brischeme function lookup which, given a key k list of pairs xs, returns the
second component of the first pair in xs whose first component is equal to k if such a pair
exists, and returns the atom ’not_found otherwise.

> (define age (list (cons ’starmer 63) (cons ’jinping 72) (cons ’trump 79)))
> (lookup ’trump age)
79
> (lookup ’modi age)
’not_found

2


