PROGRAMMING LANGUAGES AND COMPUTATION

Week 2: Context Free Grammars

* 1. Consider the following CFG G with start symbol R:

= XRX|S
u= aTb|bTa
= XTX|X|e
i= alb

V!
Il

(a) What are the non-terminals of G?
(b) What are the terminals of G?
(c) Give three strings in L(G).

(d) Give three strings not in L(G).
(€) True or false: T — aba.

(f) True or false: T —* aba.

(g) Trueor false: T — T.

(h) True or false: T —* T.

(i) True or false: XXX —* aba.
(j) True or false: X —* aba.

(k) True or false: T »* XX.

(D True or false: T —-* XXX.

(m) True or false: S —»* €.

* 2. Figure 1 contains a grammar for the Brischeme language from this week’s lab sheet.

You will need to read the section Grammars can Express Sequences from the end of in the
course notes to understand the notation Form*, SExpr*, Ident* and IdChar* from this grammar.
Unfortunately, I did not have time to cover this in the lecture.

https://uob-coms20007.github.io/notes/syntax/writing-grammars.html#grammars-can-express-sequences

The syntax of the Brischeme programming language (ignoring whitespace) is given by the

CFG with:

e Terminals: 0,1,...,9, a, b, ...

not, or, and, #t, #f.

* Nonterminals: Prog, Form, SExpr, Ident, Literal, Num, Bool, Digit, LChar, IdChar, Primop.

* The production rules are:
Prog

Form

SExpr

Ident
LChar
IdChar

Literal
Bool
Num

Digit

Primop

,%,A,B, ...

Form*

SExpr
(define Ident SExpr)

Literal

Ident

(SExpr SExpr*)

(Primop SExpr*)

(lambda (Ident*) SExpr)

LChar IdChar*

albl- |z
albl---[z[A[B]---|Z[!]?]_
Bool | Num

#t | #f

Digit Digit*

0[1]---1]9
+|-]*|/|and|or|not]|<]|=

Figure 1: Brischeme (ignoring whitespace).

,Z, L L2 <,=,+,—, %, /,(,), define, lambda,

Which of the following are valid Brischeme programs (i.e. strings in the language of that gram-
mar)? You do not have to give the derivations (but you should work through them in your head).

(@) (define x 32) (+ 4 x)

(b) (define x 32) (+ 4 y)

© (define x 32) (+ 4 5x)

(d) (define aC3! 32) (+ 4 aC3!)
) (define AC3!32) (+ 4 AC3!)
() (+ (define x 32) x 4)

(g) (lambda x (+ x x))

(h) (define f (lambda (xy) (+ x (* 2 ¥))))
@) (lambda (x b) (+ x (not b)))
() (lambda (x b) (if x))

(k) (lambda (x b) ((if b +-) 2 3))

(D ((lambda () 3))

** 3. Design CFGs for the following programming language lexemes over the ASCII alphabet. You will
find it convenient to use abbreviations like - -- to help present the expressions compactly.

(@) A C program identifier is any string of length at least 1 containing only letters (a’-'z’, lower
and uppercase), digits (0’-'9’) and the underscore, and which begins with a letter or the
underscore.

(b) An integer literal is any string taking one of the following forms:
* a non-empty sequence of digits (decimal)

* a non-empty sequence of characters from ‘0'—'9’,‘a’-‘e’ (upper or lowercase) that are
preceded by “0x” (hexadecimal)

* a non-empty sequence of bits ‘0’ and ‘1’ that are preceded by “Ob” (binary)

* 4. Consider the following grammar, which describes the structure of statements in an imperative

programming language.

Prog := Stmt Stmts (D
Stmt = if exp then Stmt else Stmt (2)
| while exp do Stmt 3)

| skip @

| id < exp (5)

| {Stmt Stmts} (6)

Stmts = ; Stmt Stmts (7
| € (8)

In it expressions appear only as a terminal symbols exp because the structure of expressions is not
important to the exercises. In total, the terminal symbols are: if, then, else, while, do, skip, id, exp,
the left and right braces, the end-of-input marker and the semicolon. The rules are numbered
to make constructing the parse tables easier. The language of this grammar (start symbol Prog)
includes strings such as:

while exp do id < exp

i.e. strings that show the control structure of the program without specifying the particular
expressions involved.
The nullable, first and follow maps for the nonterminals in this grammar are as follows:

Nonterminal | Nullable? First Follow
Prog X if, while, skip, id, {
Stmt X if, while, skip, id, { | else, ;, }
Stmts N ; }

(@) For each rule X ::= a numbered (1) — (8), compute First(a), the set of terminal symbols
that can start any string derivable from the rule right-hand side a.

(b) Construct the parsing table for the grammar.

(©) Is the grammar LL(1)?

* 5. Consider now the following grammar:

Prog = Stmt Stmts (D
Stmt = if bexp then Stmt else Stmt (2)
| while bexp do Stmt (3)

| skip (4)

| id—aexp (5)

| Stmt Stmts (6)

Stmts = ; Stmt Stmts (7)
| e (8)

This grammar is the same as the previous one, except that braces have been removed in rule 6.

The Nullable, First and Follow maps for this grammar can be tabulated as follows.

Nonterminal | Nullable? First Follow
Prog X if, while, skip, id
Stmt X if, while, skip, id | ;, else
Stmts N : ;, else

(a) For each rule X ::= a numbered (1) — (8), compute First(a), the set of terminal symbols
that can start any string derivable from the rule right-hand side a.

(b) Construct the parsing table for this grammar.

(c) Isthe grammar LL(1)?

Give CFGs for the following languages. The later parts are more difficult than 2-star.
(@) All odd length strings over {a, b}.
(b) All strings over {a, b} that contain aab as a substring.

(c) The set of strings over {a, b} with more a than b. Hint: every string w with at least as many
a as b (possibly the same number of a as b) can be characterised inductively as follows.
Either:

* wisjusta
* or, w is of shape avb with v containing at least as many a as b
* or, w is of shape bva with v containing at least as many a as b

* or, w is of shape v;v, with v; and v, each separately containing at least as many a as
b

* or, w is the empty string

(d) The complement of the language {a"b" | n > 0} over {a, b}. Hint: express "not of shape
a™b™ for some n" into one or more positive (i.e. without using not or similar) conditions.

e) {v#w]|v,we{a, b} and the reverse of v is a substring of w}, over {a, b, #}.

