
Programming Languages and Computation

Week 5: Denotational Semantics and
Induction

1 Denotational Semantics

* 1. Compute the value of the following arithmetic expressions in the state σ =
[x 7→ −1, y 7→ 11, z 7→ 10]. Your answer should be explicit about the steps you take and make
reference to the definition of the denotation function.

(a) (x + y)− z

(b) x ∗ (12− z)

(c) x − (z − 1)

* 2. Compute the value of the following arithmetic expressions in the state σ = [x 7→ 11, y 7→ 12].
Your answer should be explicit about the steps you take and make reference to the definition of
the denotation function.

(a) (x + y)− z

(b) x ∗ (12− z)

(c) x − (z − 1)

* 3. Compute the value of the following Boolean expressions in the state σ = [x 7→ 11, y 7→ 12]. Your
answer should be explicit about the steps you take and make reference to the definition of the
denotation function.

(a) (x + y ≤ z) && true

(b) !(x ∗ y = z) ∥ x = 11

(c) x ≤ y && y ≤ x

1

The next questions relate to when arithmetic and Boolean expressions are syntactically equiva-
lent or semantically equivalent. Two arithmetic or Boolean expressions are syntactically equivalent
if they have exactly the same abstract syntax tree and semantically equivalent is they denote the
same function. Remember that two functions are equal if, and only if, they have the same value
on every input.

* 4. Which of the following arithmetic expressions are syntactically equivalent and which are semanti-
cally equivalent?

(a) x ∗ 3

(b) x ∗ 1

(c) x + (x + x)

(d) (x + (x)) + x

(e) x + ((x) + x)

(f) x + (y ∗ 0)

* 5. Consider the Boolean expression x ≤ 2 && y ≤ 3. Find a semantically equivalent expression that
does not use the && operator.

* 6. Find a state in which the arithmetic expressions x ∗ 2 and x + 3 evaluate to the same value.
Explain why they are not semantically equivalent.

** 7. Suppose that e1 ∈A and e2 ∈A are semantically equivalent arithmetic expressions. Prove that
e1 + e2 is semantically equivalent to e1 ∗ 2. Your answer should make explicit reference to the
denotation function.

** 8. Suppose that e1+1 and e2+1 are two arithmetic expressions that are semantically equivalent for
some e1, e2 ∈A. Prove that e1 and e2 are also semantically equivalent.

** 9. Suppose that e1 ∗ e2 and e1 ∗2 are two arithmetic expressions that are not semantically equivalent
for some arithmetic expressions e1, e2 ∈A.

(a) Prove that e2 cannot be semantically equivalent to 2.

(b) Find concrete examples of expressions e1, e2 ∈ A such that e1 ∗ e2 and e1 ∗ 2 are not
semantically equivalent but where there exists a state σ ∈ State such that ⟦e2⟧A(σ) = 2.

2

** 10. Let us suppose we want to add a new construct to the language of arithmetic expressions:

A→ x | n | · · · | let x = A in A

An expression let x = e1 in e2 using this construct should evaluate the sub-expression e2 in a state
where the variable x is mapped to the value of e1. For example, the expression let x = 2 in x + y
when evaluated in the state [x 7→ 3, y 7→ 2] should be 4.

Extend the definition of the denotation function ⟦·⟧A with an equation for this construct. You
may find it useful to use the notation σ[x 7→ n] to represent the state σ updated such that
(σ[x 7→ n])(x) = n and (σ[x 7→ n])(y) = σ(y) for all y ̸= x . You do not need to change any other
equations.

** 11. Now let us suppose we extend the language of arithmetic expressions with a different operator:

A→ x | n | · · · | B ? A : A

An instance of this ternary operator e1?e2 : e3 for some Boolean expression e1 ∈ B and arithmetic
expressions e2, e3 ∈A behaves as e2 in states where e1 is true and behaves as e3 otherwise.

Extend the definition of the denotation function ⟦·⟧A with an equation for this construct. Your
answer may make reference to the denotation function for Boolean expressions.

2 Proof by Induction

* 12. Consider the exponential function for natural numbers with the following recursive definition:

x0 = 1

xn+1 = x · xn

Prove by induction that (x · y)z = xz · yz for any x , y, z ∈ N. You may assume that multiplication
satisfies the usual laws of associativity and commutativity.

** 13. The height of an arithmetic expression is defined recursively as follows:

height(n) = 1
height(x) = 1

height(e1 + e2) = 1+max{height(e1), height(e2)}
height(e1 − e2) = 1+max{height(e1), height(e2)}
height(e1 ∗ e2) = 1+max{height(e1), height(e2)}

(a) Prove by structural induction over arithmetic expressions that height(e)> 0 for all arith-
metic expressions e ∈A.

(b) Prove by structural induction over arithmetic expressions that 2height(e)−1 ≥ #FV(e) for all
arithmetic expressions e ∈A where #FV(e) is the number of free variables appearing in
that expression.

3

** 14. If x is a variable and e1 and e2 are arithmetic expressions, then we write e1[e2/x] for the expression
that results from substituting e2 for x in the expression e1. Formally, this operation it is defined by
recursion over the expression e1 as follows:

n[e/x] = n

y[e/x] =

¨

e if x = y

y otherwise
(e1 + e2)[e/x] = e1[e/x] + e2[e/x]
(e1 − e2)[e/x] = e1[e/x]− e2[e/x]
(e1 ∗ e2)[e/x] = e1[e/x] ∗ e2[e/x]

(a) Compute the value of the expression (y − x)[z/x] in the state [x 7→ 1, y 7→ 2, z 7→ 3].

(b) Find a state σ such that ⟦y − x⟧A(σ) evaluates to the same answer you got in part (a).
What is the relationship between this state and the state [x 7→ 1, y 7→ 2, z 7→ 3]?

(c) Prove by structural induction over expressions, for any state σ ∈ State, any pair of arith-
metic expressions e1, e2 ∈ A and any variable x ∈ Var, we have that:

⟦e1[e2/x]⟧A(σ) = ⟦e1⟧A(σ[x 7→ ⟦e2⟧A(σ)]).

Remember that e1 may be an arbitrary variable.

** 15. Write down the induction principle for Boolean expressions. Try to generalise from the
induction principle for arithmetic expressions as it appears in the reference notes (https:
//uob-coms20007.github.io/notes/semantics/induction.html).
Hint: the cases for Boolean expressions of the form e1 ≤ e2 and e1 = e2 are not inductive cases as
the sub-expressions are not actually Boolean expressions.

*** 16. We extend the notion of free variables of an arithmetic expression to Boolean expressions. Formally,
we define a function FV : B→ P(Var) from Boolean expressions to sets of variables by recursion
over the structure of expressions as follows:

FV(true) = ;
FV(false) = ;

FV(e1 ≤ e2) = FV(e1)∪ FV(e2)

FV(e1 = e2) = FV(e1)∪ FV(e2)

FV(!e) = FV(e)

FV(e1 && e2) = FV(e1)∪ FV(e2)

FV(e1 ∥ e2) = FV(e1)∪ FV(e2)

(a) Find two Boolean expressions e1, e2 ∈ B that are semantically equivalent, i.e. they evaluate
to the same value on all states, but for which FV(e1) ̸= FV(e2).

4

https://uob-coms20007.github.io/notes/semantics/induction.html
https://uob-coms20007.github.io/notes/semantics/induction.html

(b) Prove by induction that for all Boolean expressions e ∈ B and pair of states σ, σ′ ∈ State
that:

⟦e⟧B(σ) = ⟦e⟧B(σ
′)

where ∀x ∈ FV(e).σ(x) = σ′(x).

You may assume the fact that the analogous result holds for arithmetic expressions in your
answer.

** 17. Define a recursive function for substitution acting on Boolean expressions, you may wish to model
your answer on substitution for arithmetic expressions from Question 14.
Prove that your definition satisfies the property:

⟦e1[e2/x]⟧B(σ) = ⟦e1⟧B(σ[x 7→ ⟦e2⟧A(σ)]).

for any Boolean expression e1 ∈ B, arithmetic expression e2 ∈A, and any variable x ∈ Var. You
may assume the analogous property shown in Question 14.

*** 18. The set of contexts is defined by the following grammar:

C → ϵ | A+ C | C + A | A− C | C − A | A∗ C | C ∗ A

where A is an arbitrary arithmetic expression. We write C for the set of contexts.

Given a context C ∈ C and an arithmetic expression e ∈A, we write C[e] ∈A for the arithmetic
expression that is derived by replacing the “ϵ” in C with the expression e. For example, (x + ϵ)[y]
is the expression x + y. Formally, this operation is defined by recursion over contexts:

ϵ[e1] = e1

(e2 + C)[e1] = e2 + C[e1]

(C + e2)[e1] = C[e1] + e2

(e2 − C)[e1] = e2 − C[e1]

(C − e2)[e1] = C[e1]− e2

(e2 ∗ C)[e1] = e2 ∗ C[e1]

(C ∗ e2)[e1] = C[e1] ∗ e2

(a) Consider the arithmetic expressions x + x and x ∗ 2 and the context y + ϵ. Show that
(y + ϵ)[x + x] and (y + ϵ)[x ∗ 2] are semantically equivalent.

(b) Now suppose e1 and e2 are arbitrary arithmetic expressions that are semantically equivalent.
Show that (y + ϵ)[e1] and (y + ϵ)[e2] are semantically equivalent as well.

(c) Prove by structural induction that, for any context C ∈ C, and any two semantically
equivalent arithmetic expressions e1 ∈A and e2 ∈A, that C[e1] and C[e2] are semantically
equivalent.

5

	Denotational Semantics
	Proof by Induction

