
Programming Languages and Computation

Week 7: Operational Semantics & Hoare
Logic

1 Operational Semantics

This section is about the small-step operational semantics of While programs as given by the
relation → ⊆ C × C where the configurations are either a statement and a state or a state
C = (S× State)∪ State, which is defined by these following rules:

〈skip, σ〉 → σ 〈x ← e, σ〉 → σ[x 7→ ⟦e⟧A(σ)]

〈S1, σ1〉 → σ2

〈S1; S2, σ1〉 → 〈S2, σ2〉

〈S1, σ1〉 → 〈S′1, σ2〉

〈S1; S2, σ1〉 → 〈S′1; S2, σ2〉

⟦e⟧B(σ) =⊤〈if e then S1 else S2, σ〉 → 〈S1, σ〉

⟦e⟧B(σ) =⊥〈if e then S1 else S2, σ〉 → 〈S2, σ〉

⟦e⟧B(σ) =⊥〈while e do S, σ〉 → σ

⟦e⟧B(σ) =⊤〈while e do S, σ〉 → 〈S; while e do S, σ〉

Figure 1: Operational semantics for While.

* 1. Calculate the terminal state and write down a trace for the statement x ← 1; {x ← 2; x ← 3} with
the initial state [] using the rules in Figure 1. Remember, variables are assigned 0 by default.

* 2. Calculate the terminal state and write down a trace for the statement {x ← 1; x ← x ∗2}; x ← x+ y
with the initial state [x 7→ 2, y 7→ 2] using the rules in Figure 1.

* 3. Find a state σ such that 〈x ← 1; y ← x ∗2, []〉 →∗ σ. You should provide the corresponding trace.

1

* 4. Compute the final state for the program if x ≤ y then x ← y else y ← x when executed in each
of the following states:

• []

• [x 7→ 2, y 7→ 3]

• [x 7→ 4, y 7→ 2]

* 5. Find a state σ ∈ State such that while !(x ≤ −1) do x ← x + d, [d 7→ −1] →∗ σ. You should
provide the corresponding trace.

* 6. Find a state σ ∈ State such that 〈x ← 2; y ← x ∗ y , σ〉 →∗ [x 7→ 2, y 7→ 4]. You should provide
the corresponding trace.

** 7. Suppose e ∈ B is a Boolean expression that is semantically equivalent to false. Prove that
〈while e do S, σ〉 → σ for any state σ ∈ State.

** 8. Suppose S1, S2 ∈ S are two statements such that 〈S1, σ〉 →∗ σ′ and 〈S2, σ〉 →∗ σ′ for some states
σ, σ′ ∈ State. Prove that 〈if e then S1 else S2, σ〉 →∗ σ′ for any Boolean expression e ∈ B.

** 9. Suppose we introduce a new language construct “do S while e” where S ∈ S is a statement
and e ∈ B is a Boolean expression. The operational semantics for this construct is given by the
following inference rules:

〈do S while e, σ〉 → 〈S; if e then do S while e else skip, σ〉

(a) Find a state σ ∈ State such that 〈do x ← x+1 while x ≤ 1, []〉 →∗ σ and give the associated
trace.

(b) For a given statement S ∈ S and a Boolean expression e ∈ B find a While program that is
equivalent to the program do S while e but does not use the new construct. That is, find a
statement S′ ∈ S such that:

〈S′, σ〉 →∗ σ′⇔〈do S while e, σ〉 →∗ σ′

You do not need to prove that your answer is correct but should provide a trace for
〈S′, []〉 →∗ σ where S is given to be the statement x ← x + 1, where e is given to be the
expression x ≤ 1, and where σ is the state from part (a).

** 10. Suppose we introduce a new language construct for x do S where S ∈ S is a statement and x ∈ Var
is a variable The operational semantics for this construct is given by the following inference rules:

σ(x)≤ 0
〈for x do S, σ〉 → σ

σ(x)> 0
〈for x do S, σ1〉 → 〈S; for x do S, σ[x 7→ σ(x)− 1]〉

2

(a) Find a state σ ∈ State such that 〈for x do y ← y + x; x ← x − 2, [x 7→ 3]〉 →∗ σ and give
the associated trace.

(b) For a given statement S ∈ S and a variable x ∈ Var find a While program that is equivalent
to the program for x do S but does not use the new construct. That is, find a statement
S′ ∈ S such that:

〈S′, σ〉 →∗ σ′⇔〈for x do S, σ〉 →∗ σ′

You do not need to prove that your answer is correct but should provide a trace for
〈S′, [x 7→ 3]〉 →∗ σ where S is given to be the statement y ← y + x; x ← x − 2 and σ is
the state from part (a).

*** 11. Show that, if y /∈ FV(e1) and x /∈ FV(e2), then the statements x ← e1; y ← e2 and y ← e2; x ← e1
equivalent in the sense that 〈x ← e1; y ← e2, σ〉 →∗ σ′ if and only if 〈y ← e2; x ← e1, σ〉 →∗ σ′.
You may use results from the previous worksheet.

*** 12. The set of variables modified by a statement is defined by recursion as follows:

mod(skip) = ;
mod(x ← e) = {x}
mod(S1; S2) =mod(S1)∪mod(S2)
mod(if e then S1 else S2) =mod(S1)∪mod(S2)
mod(while e do S) =mod(S)

(a) Prove that if 〈S1, σ1〉 → σ2 then σ1(x) = σ2(x) for all x /∈mod(S1).

(b) Prove that if 〈S1, σ1〉 → 〈S1, σ2〉 then mod(S2) ⊆ mod(S1) and σ1(x) = σ2(x) for all
x /∈mod(S1). You may use the previous result.

(c) Prove that if 〈S1, σ1〉 →∗ σ2 then σ1(x) = σ2(x) for all x /∈ mod(S1). You may use the
previous results, and the fact that γ1→∗ γ2 if, and only if, γ1→n γ2 for some n≥ 0.

Hoare Logic

* 13. Consider the following invalid Hoare triple: {x ≤ y} y ← y ∗ 2 {x ≤ y}. Find an initial state
σ ∈ State and a trace from the configuration 〈y ← y ∗ 2, σ〉 that contradicts this triple.

* 14. Find a statement S such that {true} S {z ≤ x && z ≤ y}.

** 15. For each of the following statements, compute the strongest post-condition from the pre-condition
(∃q. x = q ∗ y) && y ≥ 0:

3

(a) x ← x ∗ x

(b) if y ≤ x then x ← x − y else y ← y − x

** 16. Using your answers to the previous question, for each of the following Hoare triples determine
whether they are valid or not. You should justify your answer.

(a) {(∃q. x = q ∗ y) && y ≥ 0} x ← x ∗ x {(∃q. x = q ∗ y)}

(b) {(∃q. x = q ∗ y) && y ≥ 0} x ← x ∗ x {x ≥ y}

(c) {(∃q. x = q∗ y) && y ≥ 0} if y ≤ x then x ← x− y else y ← y− x {(∃q. x = q∗ y) && y ≥ 0}

** 17. Suppose S1, S2, S3 ∈ S are statements satisfying the following Hoare triples:

• {x ≤ y} S1 {y ≤ x && x ≤ 0}

• {∀z. x ∗ z = 0} S2 {y = z}

• {x > y && z = x} S3 {y ≤ x}

Then which of the following triples can be derived? You should briefly justify your answer.

(a) {x ≤ y && x = 0} S1; S2 {y = z}

(b) {z = x} if x ≤ y then S1 else S2 {y ≤ x}

(c) {x ≤ y} S1; if y = 0 then S2 else y ← z {y = z}

*** 18. The rule of consequence allows us to weaken a Hoare triple for more general context. However, it
is also useful to be able to adapt Hoare triples to contexts with other unrelated variables. This
can be done through the constancy rule:

{P} S {Q}
FV(R)∩mod(S) = ;

{P && R} S {Q && R}

Where FV(P) for a predicate P ⊆ State is defined as the set of variables x ∈ Var such that σ ∈ P
but σ[x 7→ n] /∈ P for some state σ ∈ State and n ∈ Z; intuitively, those variables whose value
effect whether a state is in the set of not and mod(S) is the set of variables appearing anywhere
in the program.

(a) Suppose that S1 and S2 are two statement such that {P1} S1 {Q1} and {P2} S2 {Q2} where:
• FV(P1), FV(Q1) ⊆ FV(S1);
• FV(P2), FV(Q2) ⊆ FV(S2);
• And FV(S1)∩ FV(S2) = ;.

Justify how {P1 ∧ P2} S1; S2 {Q1 ∧Q2} can be derived from the constancy rule.

4

(b) Suppose that P ⊆ State is some set of states. Prove that, if σ ∈ P and σ(x) = σ′(x) for all
x ∈ FV(P) and #{x ∈ Var | σ(x) ̸= σ′(x)} is finite, then σ′ ∈ P. You may wish to prove it
by induction on #{x ∈ Var | σ(x) ̸= σ′(x)}.

(c) Prove that the rule of constancy holds that is:

{P} S {Q} ⇒ {P && R} S {Q && R}

for any statement S, and predicates P, Q, R ⊆ State such that FV(R) ∩mod(S) = ;. You
may wish to use the result from Question 12.

5

	Operational Semantics

