Programming Languages and Computation

Week 7: Operational Semantics & Hoare Logic

1 Operational Semantics

This section is about the small-step operational semantics of While programs as given by the relation $\rightarrow \subseteq \mathcal{C} \times \mathcal{C}$ where the configurations are either a statement and a state or a state $\mathcal{C} = (S \times State) \cup State$, which is defined by these following rules:

Figure 1: Operational semantics for While.

- * 1. Calculate the terminal state and write down a trace for the statement $x \leftarrow 1$; $\{x \leftarrow 2; x \leftarrow 3\}$ with the initial state [] using the rules in Figure 1. Remember, variables are assigned 0 by default.
- * 2. Calculate the terminal state and write down a trace for the statement $\{x \leftarrow 1; x \leftarrow x*2\}; x \leftarrow x+y$ with the initial state $[x \mapsto 2, y \mapsto 2]$ using the rules in Figure 1.
- * 3. Find a state σ such that $\langle x \leftarrow 1; y \leftarrow x * 2, [] \rangle \rightarrow^* \sigma$. You should provide the corresponding trace.

- * 4. Compute the final state for the program if $x \le y$ then $x \leftarrow y$ else $y \leftarrow x$ when executed in each of the following states:
 - []
 - $[x \mapsto 2, y \mapsto 3]$
 - $[x \mapsto 4, y \mapsto 2]$
- * 5. Find a state $\sigma \in \text{State}$ such that while $!(x \le -1)$ do $x \leftarrow x + d$, $[d \mapsto -1] \to^* \sigma$. You should provide the corresponding trace.
- * 6. Find a state $\sigma \in$ State such that $\langle x \leftarrow 2; y \leftarrow x * y, \sigma \rangle \rightarrow^* [x \mapsto 2, y \mapsto 4]$. You should provide the corresponding trace.
- ** 7. Suppose $e \in \mathcal{B}$ is a Boolean expression that is semantically equivalent to false. Prove that $\langle \text{while } e \text{ do } S, \sigma \rangle \to \sigma$ for any state $\sigma \in \text{State}$.
- ** 8. Suppose $S_1, S_2 \in \mathcal{S}$ are two statements such that $\langle S_1, \sigma \rangle \to^* \sigma'$ and $\langle S_2, \sigma \rangle \to^* \sigma'$ for some states $\sigma, \sigma' \in \text{State}$. Prove that $\langle \text{if } e \text{ then } S_1 \text{ else } S_2, \sigma \rangle \to^* \sigma'$ for any Boolean expression $e \in \mathcal{B}$.
- ** 9. Suppose we introduce a new language construct "do S while e" where $S \in \mathcal{S}$ is a statement and $e \in \mathcal{B}$ is a Boolean expression. The operational semantics for this construct is given by the following inference rules:

$$\langle do\ S\ while\ e,\ \sigma \rangle \rightarrow \langle S;\ if\ e\ then\ do\ S\ while\ e\ else\ skip,\ \sigma \rangle$$

- (a) Find a state $\sigma \in \mathsf{State}$ such that $\langle \mathsf{do} \ x \leftarrow x + 1 \ \mathsf{while} \ x \leq 1, [] \rangle \to^* \sigma$ and give the associated trace.
- (b) For a given statement $S \in \mathcal{S}$ and a Boolean expression $e \in \mathcal{B}$ find a While program that is equivalent to the program do S while e but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$\langle S', \sigma \rangle \to^* \sigma' \iff \langle \operatorname{do} S \text{ while } e, \sigma \rangle \to^* \sigma'$$

You do not need to prove that your answer is correct but should provide a trace for $\langle S', [] \rangle \to^* \sigma$ where S is given to be the statement $x \leftarrow x + 1$, where e is given to be the expression $x \le 1$, and where σ is the state from part (a).

** 10. Suppose we introduce a new language construct for x do S where $S \in S$ is a statement and $x \in V$ is a variable. The operational semantics for this construct is given by the following inference rules:

$$\frac{1}{\langle \text{for } x \text{ do } S, \sigma \rangle \to \sigma} \sigma(x) \leq 0 \quad \frac{1}{\langle \text{for } x \text{ do } S, \sigma_1 \rangle \to \langle S; \text{ for } x \text{ do } S, \sigma[x \mapsto \sigma(x) - 1] \rangle} \sigma(x) > 0$$

- (a) Find a state $\sigma \in \text{State}$ such that $\langle \text{for } x \text{ do } y \leftarrow y + x; \ x \leftarrow x 2, [x \mapsto 3] \rangle \rightarrow^* \sigma$ and give the associated trace.
- (b) For a given statement $S \in \mathcal{S}$ and a variable $x \in Var$ find a While program that is equivalent to the program for x do S but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$\langle S', \sigma \rangle \to^* \sigma' \Leftrightarrow \langle \text{for } x \text{ do } S, \sigma \rangle \to^* \sigma'$$

You do not need to prove that your answer is correct but should provide a trace for $\langle S', [x \mapsto 3] \rangle \to^* \sigma$ where S is given to be the statement $y \leftarrow y + x$; $x \leftarrow x - 2$ and σ is the state from part (a).

- *** 11. Show that, if $y \notin FV(e_1)$ and $x \notin FV(e_2)$, then the statements $x \leftarrow e_1$; $y \leftarrow e_2$ and $y \leftarrow e_2$; $x \leftarrow e_1$ equivalent in the sense that $\langle x \leftarrow e_1; y \leftarrow e_2, \sigma \rangle \rightarrow^* \sigma'$ if and only if $\langle y \leftarrow e_2; x \leftarrow e_1, \sigma \rangle \rightarrow^* \sigma'$. You may use results from the previous worksheet.
- *** 12. The set of variables *modified* by a statement is defined by recursion as follows:

$$\begin{aligned} & \operatorname{mod}(\operatorname{skip}) = \emptyset \\ & \operatorname{mod}(x \leftarrow e) = \{x\} \\ & \operatorname{mod}(S_1; S_2) = \operatorname{mod}(S_1) \cup \operatorname{mod}(S_2) \\ & \operatorname{mod}(\operatorname{if} e \operatorname{then} S_1 \operatorname{else} S_2) = \operatorname{mod}(S_1) \cup \operatorname{mod}(S_2) \\ & \operatorname{mod}(\operatorname{while} e \operatorname{do} S) = \operatorname{mod}(S) \end{aligned}$$

- (a) Prove that if $\langle S_1, \sigma_1 \rangle \to \sigma_2$ then $\sigma_1(x) = \sigma_2(x)$ for all $x \notin \text{mod}(S_1)$.
- (b) Prove that if $\langle S_1, \sigma_1 \rangle \to \langle S_1, \sigma_2 \rangle$ then $mod(S_2) \subseteq mod(S_1)$ and $\sigma_1(x) = \sigma_2(x)$ for all $x \notin mod(S_1)$. You may use the previous result.
- (c) Prove that if $\langle S_1, \sigma_1 \rangle \to^* \sigma_2$ then $\sigma_1(x) = \sigma_2(x)$ for all $x \notin \text{mod}(S_1)$. You may use the previous results, and the fact that $\gamma_1 \to^* \gamma_2$ if, and only if, $\gamma_1 \to^n \gamma_2$ for some $n \ge 0$.

Hoare Logic

- * 13. Consider the following *invalid* Hoare triple: $\{x \le y\}$ $y \leftarrow y * 2$ $\{x \le y\}$. Find an initial state $\sigma \in \text{State}$ and a trace from the configuration $(y \leftarrow y * 2, \sigma)$ that contradicts this triple.
- * 14. Find a statement *S* such that $\{\text{true}\}\ S\ \{z \le x \&\& z \le y\}$.
- ** 15. For each of the following statements, compute the strongest post-condition from the pre-condition $(\exists q. x = q * y) \&\& y \ge 0$:

- (a) $x \leftarrow x * x$
- (b) if $y \le x$ then $x \leftarrow x y$ else $y \leftarrow y x$
- ** 16. Using your answers to the previous question, for each of the following Hoare triples determine whether they are valid or not. You should justify your answer.

(a)
$$\{(\exists q. x = q * y) \& x y \ge 0\} x \leftarrow x * x \{(\exists q. x = q * y)\}$$

(b)
$$\{(\exists q. x = q * y) \&\& y \ge 0\} x \leftarrow x * x \{x \ge y\}$$

(c)
$$\{(\exists q. x = q * y) \&\& y \ge 0\}$$
 if $y \le x$ then $x \leftarrow x - y$ else $y \leftarrow y - x$ $\{(\exists q. x = q * y) \&\& y \ge 0\}$

- ** 17. Suppose $S_1, S_2, S_3 \in \mathcal{S}$ are statements satisfying the following Hoare triples:
 - $\{x \le y\}$ S_1 $\{y \le x \&\& x \le 0\}$
 - $\{\forall z. \ x * z = 0\} \ S_2 \ \{y = z\}$
 - $\{x > y \&\& z = x\} S_3 \{y \le x\}$

Then which of the following triples can be derived? You should briefly justify your answer.

(a)
$$\{x \le y \&\& x = 0\} S_1; S_2 \{y = z\}$$

(b)
$$\{z = x\}$$
 if $x \le y$ then S_1 else S_2 $\{y \le x\}$

(c)
$$\{x \le y\}$$
 S_1 ; if $y = 0$ then S_2 else $y \leftarrow z$ $\{y = z\}$

*** 18. The rule of consequence allows us to weaken a Hoare triple for more general context. However, it is also useful to be able to adapt Hoare triples to contexts with other unrelated variables. This can be done through the *constancy rule*:

$$\frac{\{P\} \ S \ \{Q\}}{\{P \ \&\& \ R\} \ S \ \{Q \ \&\& \ R\}} \ \mathsf{FV}(R) \cap \mathsf{mod}(S) = \emptyset$$

Where FV(P) for a predicate $P \subseteq S$ tate is defined as the set of variables $x \in V$ ar such that $\sigma \in P$ but $\sigma[x \mapsto n] \notin P$ for some state $\sigma \in S$ tate and $n \in \mathbb{Z}$; intuitively, those variables whose value effect whether a state is in the set of not and mod(S) is the set of variables appearing anywhere in the program.

- (a) Suppose that S_1 and S_2 are two statement such that $\{P_1\}$ S_1 $\{Q_1\}$ and $\{P_2\}$ $\{Q_2\}$ where:
 - $FV(P_1)$, $FV(Q_1) \subseteq FV(S_1)$;
 - $FV(P_2)$, $FV(Q_2) \subseteq FV(S_2)$;
 - And $FV(S_1) \cap FV(S_2) = \emptyset$.

Justify how $\{P_1 \wedge P_2\}$ S_1 ; S_2 $\{Q_1 \wedge Q_2\}$ can be derived from the constancy rule.

- (b) Suppose that $P \subseteq \text{State}$ is some set of states. Prove that, if $\sigma \in P$ and $\sigma(x) = \sigma'(x)$ for all $x \in \text{FV}(P)$ and $\#\{x \in \text{Var} \mid \sigma(x) \neq \sigma'(x)\}$ is finite, then $\sigma' \in P$. You may wish to prove it by induction on $\#\{x \in \text{Var} \mid \sigma(x) \neq \sigma'(x)\}$.
- (c) Prove that the rule of constancy holds that is:

$${P} S {Q} \Rightarrow {P \&\& R} S {Q \&\& R}$$

for any statement S, and predicates P, Q, $R \subseteq S$ tate such that $FV(R) \cap mod(S) = \emptyset$. You may wish to use the result from Question 12.