\[ \newcommand{\tr}{\Rightarrow} \newcommand{\trs}{\tr^{\!\ast}} \newcommand{\rlnm}[1]{\mathsf{(#1)}} \newcommand{\rred}[1]{\xrightarrow{#1}} \newcommand{\rreds}[1]{\mathrel{\xrightarrow{#1}\!\!^*}} \newcommand{\cl}{\mathsf{Cl}} \newcommand{\pow}{\mathcal{P}} \newcommand{\matches}{\mathrel{\mathsf{matches}}} \newcommand{\kw}[1]{\mathsf{#1}} \]

Big Step Semantics

The relation “\(R \matches w\)” is defined inductively using the following rules:

\[\begin{prooftree} \AxiomC{} \LeftLabel{$\rlnm{MEmpty}$} \UnaryInfC{$\epsilon \matches \epsilon$} \end{prooftree} \qquad\qquad \begin{prooftree} \AxiomC{} \LeftLabel{$\rlnm{MChar}$} \UnaryInfC{$a \matches a$} \end{prooftree}\]


\[\begin{prooftree} \AxiomC{$R \matches v$} \AxiomC{$S \matches w$} \LeftLabel{$\rlnm{Concat}$} \BinaryInfC{$R \cdot S \matches vw$} \end{prooftree}\]


\[\begin{prooftree} \AxiomC{$R \matches w$} \LeftLabel{$\rlnm{ChoiceL}$} \UnaryInfC{$R + S \matches w$} \end{prooftree} \qquad\qquad \begin{prooftree} \AxiomC{$S \matches w$} \LeftLabel{$\rlnm{ChoiceR}$} \UnaryInfC{$R + S \matches w$} \end{prooftree}\]


\[\begin{prooftree} \AxiomC{} \LeftLabel{$\rlnm{StarB}$} \UnaryInfC{$R^* \matches \epsilon$} \end{prooftree} \qquad\qquad \begin{prooftree} \AxiomC{$R \matches v$} \AxiomC{$R^* \matches w$} \LeftLabel{$\rlnm{StarS}$} \BinaryInfC{$R^* \matches vw$} \end{prooftree}\]