\[ \newcommand{\tr}{\Rightarrow} \newcommand{\trs}{\tr^{\!\ast}} \newcommand{\rlnm}[1]{\mathsf{(#1)}} \newcommand{\rred}[1]{\xrightarrow{#1}} \newcommand{\rreds}[1]{\mathrel{\xrightarrow{#1}\!\!^*}} \newcommand{\cl}{\mathsf{Cl}} \newcommand{\pow}{\mathcal{P}} \newcommand{\matches}{\mathrel{\mathsf{matches}}} \newcommand{\kw}[1]{\mathsf{#1}} \newcommand{\andop}{\mathrel{\&\!\&}} \newcommand{\orop}{\mathrel{\|}} \newcommand{\ff}{\mathsf{false}} \newcommand{\tt}{\mathsf{true}} \newcommand{\abra}[1]{\langle #1 \rangle} \newcommand{\bnfnt}[1]{\abra{\small \textsf{#1}}} \newcommand{\llbracket}{[\![} \newcommand{\rrbracket}{]\!]} \newcommand{\first}{\mathsf{First}} \newcommand{\nullable}{\mathsf{Nullable}} \newcommand{\follow}{\mathsf{Follow}} \newcommand{\tm}[1]{\mathsf{#1}} \]
\[\nullable_s(\alpha) \quad\mathit{ iff }\quad \alpha \to^* \epsilon\] \[\first_s(\alpha) = \{ a \in \Sigma \mid \alpha \to^* a\beta\}\]

We define the parsing table, usually $T$, for a given grammar as a 2d array in which each entry $T[X,a]$ is a set of production rules from the grammar, such that some rule $X \longrightarrow \beta$ is in the set $T[X,a]$ just if, either:

  1. $a \in \first_s(\beta)$
  2. or, $\nullable_s(\beta)$ and $a \in \follow(X)$